Menu Close

Category: Relation and Functions

Let-f-0-x-1-1-x-and-f-n-x-f-0-f-n-1-x-n-1-2-3-Evaluate-f-2018-2018-

Question Number 111149 by Aina Samuel Temidayo last updated on 02/Sep/20 $$\mathrm{Let}\:\mathrm{f}_{\mathrm{0}} \left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\:\mathrm{and}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right) \\ $$$$=\mathrm{f}_{\mathrm{0}} \left(\mathrm{f}_{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}\right)\right),\:\mathrm{n}=\mathrm{1},\mathrm{2},\mathrm{3},…\:\mathrm{Evaluate} \\ $$$$\mathrm{f}_{\mathrm{2018}} \left(\mathrm{2018}\right) \\ $$ Commented by…

1-calculate-A-n-0-n-1-x-2x-1-x-dx-2-find-lim-n-A-n-3-study-the-serie-A-n-

Question Number 45599 by maxmathsup by imad last updated on 14/Oct/18 $$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}{x}+\mathrm{1}−\left[{x}\right]}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\:\Sigma\:{A}_{{n}} \\ $$ Commented by…

find-the-range-of-x-y-such-that-x-2-2-y-4-2-49-

Question Number 176501 by infinityaction last updated on 20/Sep/22 $$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\:\left({y}−\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{49} \\ $$ Commented by cortano1 last updated on 20/Sep/22 $$\:\mathrm{let}\:\mathrm{x}+\mathrm{y}=\mathrm{k}\:\Rightarrow\mathrm{x}+\mathrm{y}−\mathrm{k}=\mathrm{0} \\…

verify-the-formulae-n-1-na-1-p-pi-a-n-lim-z-1-a-1-p-1-cotan-piz-p-1-inthis-case-1-a-1-and-p-2-2-a-2-and-p-2-3-a-2-and-p-3-4-a-3-and-p-2-

Question Number 110954 by mathmax by abdo last updated on 01/Sep/20 $$\mathrm{verify}\:\mathrm{the}\:\mathrm{formulae} \\ $$$$\sum_{\mathrm{n}=−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\left(\mathrm{na}\:+\mathrm{1}\right)^{\mathrm{p}} }\:=−\frac{\pi}{\mathrm{a}^{\mathrm{n}} }\:\mathrm{lim}_{\mathrm{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{a}}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{p}−\mathrm{1}\right)!}\left\{\mathrm{cotan}\left(\pi\mathrm{z}\right)\right\}^{\left(\mathrm{p}−\mathrm{1}\right)} \\ $$$$\left.\mathrm{inthis}\:\mathrm{case}\:\:\mathrm{1}\right)\:\:\mathrm{a}\:=\mathrm{1}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}=\mathrm{2}\:\:\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{3}\right)\mathrm{a}=\mathrm{2}\:\mathrm{and}\:\mathrm{p}=\mathrm{3}…

bemath-If-each-point-on-the-line-3x-4y-2-is-transformed-by-matrix-M-2-0-0-1-the-image-is-a-line-

Question Number 110948 by bemath last updated on 01/Sep/20 $$\:\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\mathrm{If}\:\mathrm{each}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{4y}=\mathrm{2} \\ $$$$\mathrm{is}\:\mathrm{transformed}\:\mathrm{by}\:\mathrm{matrix}\:\mathrm{M}=\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{1}}\end{pmatrix}\:,\:\mathrm{the} \\ $$$$\mathrm{image}\:\mathrm{is}\:\mathrm{a}\:\mathrm{line}\:\_\_\_ \\ $$ Commented by bemath last updated on 01/Sep/20…