Menu Close

Category: Relation and Functions

Given-that-f-x-3-2x-3-4-x-4-on-the-interval-3-2-lt-x-lt-4-Find-the-a-Maximum-value-of-f-x-b-The-value-of-x-that-gives-the-maximum-in-a-

Question Number 110669 by Aina Samuel Temidayo last updated on 30/Aug/20 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{3}+\mathrm{2x}\right)^{\mathrm{3}} \left(\mathrm{4}−\mathrm{x}\right)^{\mathrm{4}} \:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{interval}\:−\frac{\mathrm{3}}{\mathrm{2}}<\mathrm{x}<\mathrm{4}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{that}\:\mathrm{gives}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{in}\:\left(\mathrm{a}\right) \\ $$ Commented…

If-f-x-g-x-f-x-g-x-find-the-function-of-f-x-

Question Number 110456 by bobhans last updated on 29/Aug/20 $$\:\:\:{If}\:\left({f}\left({x}\right).{g}\left({x}\right)\right)'\:=\:{f}\left({x}\right)'\:.\:{g}\left({x}\right)'\: \\ $$$$\:{find}\:{the}\:{function}\:{of}\:{f}\left({x}\right)\:. \\ $$ Answered by bemath last updated on 29/Aug/20 $$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{f}\left(\mathrm{x}\right).\mathrm{g}\left(\mathrm{x}\right)\right)=\mathrm{f}\left(\mathrm{x}\right)'.\mathrm{g}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{x}\right).\mathrm{g}\left(\mathrm{x}\right)' \\ $$$$\mathrm{then}\:\mathrm{given}\:\mathrm{condition}\: \\…

find-lim-x-0-arctan-x-sinx-arctan-1-cosx-x-2-

Question Number 110449 by mathmax by abdo last updated on 29/Aug/20 $$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{arctan}\left(\mathrm{x}−\mathrm{sinx}\right)−\mathrm{arctan}\left(\mathrm{1}−\mathrm{cosx}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$ Answered by bemath last updated on 29/Aug/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}−\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}}…

Question-110281

Question Number 110281 by 675480065 last updated on 28/Aug/20 Answered by Rio Michael last updated on 28/Aug/20 $$\:\mathrm{3}{x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{5}\right)\:\:\:\:\left({i}\right) \\ $$$$\:\mathrm{5}{x}\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{7}\right)\:\:\:\:\:\left({ii}\right) \\ $$$$\mathrm{from}\:\left({i}\right)\:\:{x}\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{5}\right)\:\:\left({iii}\right) \\ $$$$\mathrm{from}\:\left({ii}\right)\:{x}\:\equiv\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{7}\right)\:\:\left({iv}\right) \\…

solve-the-follwing-equation-x-x-y-y-3-and-x-y-y-x-2-someone-solve-the-above-equations-in-the-following-way-x-3-y-3-2xy-xy-9-1-and-x-2-y-

Question Number 175801 by Lekhraj last updated on 07/Sep/22 $${solve}\:{the}\:{follwing}\:{equation} \\ $$$${x}\sqrt{{x}\:}\:\:\:+\:\:{y}\sqrt{{y}\:}\:\:=\:\:\mathrm{3}\:\:\:{and}\:\:\:{x}\sqrt{{y}\:}\:\:+\:{y}\sqrt{{x}\:}\:\:=\:\:\mathrm{2} \\ $$$${someone}\:{solve}\:{the}\:{above}\:{equations}\:{in}\:{the}\:{following}\:{way}\: \\ $$$${x}^{\mathrm{3}} +\:{y}^{\mathrm{3}} +\:\mathrm{2}{xy}\sqrt{{xy}\:}\:\:=\:\mathrm{9}…..\left(\mathrm{1}\right)\:\:\:\:{and}\:\:\:{x}^{\mathrm{2}} {y}\:\:+\:\:{y}^{\mathrm{2}} {x}\:\:+\:\mathrm{2}{xy}\sqrt{{xy}\:}\:\:=\:\:\mathrm{4}……\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:−\:\left(\mathrm{2}\right)\:\:\:\Rightarrow\:\:\left({x}\:−\:{y}\right)\left({x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:\right)\:=\:\mathrm{5} \\…