Question Number 42492 by maxmathsup by imad last updated on 26/Aug/18 $${let}\:{x}>\mathrm{0}\:,{y}>\mathrm{0},{z}>\mathrm{0}\:\:\:{prove}\:{that}\:\:\frac{{x}^{\mathrm{2}} }{{yz}}\:+\frac{{y}^{\mathrm{2}} }{{xz}}\:+\frac{{z}^{\mathrm{2}} }{{xy}}\:\geqslant\mathrm{3}\:. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 26/Aug/18 $$\frac{{x}^{\mathrm{3}}…
Question Number 42482 by maxmathsup by imad last updated on 26/Aug/18 $${let}\:{f}\left({x}\right)={e}^{−\mathrm{2}{x}} \:{arctan}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$ Commented by…
Question Number 42463 by abdo.msup.com last updated on 26/Aug/18 $${let}\:{y}\:\:=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\mathrm{2}}}} \\ $$$${calculate}\:\:\frac{{dy}}{{dx}} \\ $$ Commented by maxmathsup by imad last updated on 26/Aug/18 $${we}\:{have}\:{y}^{\mathrm{2}} \:={x}+\sqrt{{x}+\sqrt{{x}+\mathrm{2}}\:}\:\:\Rightarrow\left({y}^{\mathrm{2}}…
Question Number 42401 by abdo.msup.com last updated on 24/Aug/18 $${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$ Commented by maxmathsup by imad last updated on 25/Aug/18…
Question Number 42400 by abdo.msup.com last updated on 24/Aug/18 $${find}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\:\sqrt{{k}}\:+\sqrt{{n}−{k}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 42278 by rish@bh last updated on 21/Aug/18 Commented by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18 $${excellent}\:{problem}… \\ $$$$\Psi=\overset{\rightarrow} {{B}}.\overset{\rightarrow} {{A}} \\ $$$$\frac{{d}\Psi}{{dt}}=\overset{\rightarrow} {{B}}.\frac{{d}\overset{\rightarrow} {{A}}}{{dt}}+\frac{{d}\overset{\rightarrow}…
Question Number 42266 by maxmathsup by imad last updated on 21/Aug/18 $${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}\:=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \:+\mathrm{1}}\:. \\ $$ Commented by maxmathsup by…
Question Number 42190 by maxmathsup by imad last updated on 19/Aug/18 $${let}\:\:\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\:\sqrt{{k}}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left({u}_{{n}} \right){is}\:{convergente} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$ Commented…
Question Number 42187 by maxmathsup by imad last updated on 19/Aug/18 $${study}\:{the}\:{convergence}\:{of}\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:{e}^{−{i}\frac{{k}\pi}{{x}}} \:\:\:\:{and}\:{find}\:{its}\:{sum}\: \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 42098 by abdo.msup.com last updated on 17/Aug/18 $${let}\:{S}_{{n},{p}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\:\sqrt{{k}+{p}}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{S}_{{n},{p}} \:{when}\:{n}\rightarrow+\infty \\ $$$${p}\:{integr}\:\geqslant\mathrm{1}. \\ $$ Commented by maxmathsup by imad…