Menu Close

Category: Relation and Functions

bemath-Given-f-x-2x-3-g-f-x-2x-1-find-f-g-2-

Question Number 106707 by bemath last updated on 06/Aug/20 $$\:\:\:\:@\mathrm{bemath}@ \\ $$$$\mathcal{G}\mathrm{iven}\:\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{3}}\\{\left(\mathrm{g}\circ\mathrm{f}\right)\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\left(\mathrm{f}\circ\mathrm{g}\right)\left(\mathrm{2}\right). \\ $$ Answered by john santu last updated on 06/Aug/20 Answered…

let-f-x-0-te-t-2-arctan-xt-dt-1-find-a-simple-form-of-f-x-2-calculate-0-te-t-2-arctantdt-and-0-t-e-t-2-arctan-2t-dt-3-let-u-n-0-t-e-t-2-arctan-nt-dt-

Question Number 40984 by prof Abdo imad last updated on 30/Jul/18 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{te}^{−{t}^{\mathrm{2}} } \:{arctan}\left({xt}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{te}^{−{t}^{\mathrm{2}} } {arctantdt}\:{and} \\…

prove-that-1-0-1-t-p-ln-t-t-1-dt-pi-2-6-k-1-p-1-k-2-2-0-1-t-2p-ln-t-t-2-1-dt-pi-2-8-k-0-p-1-1-2k-1-2-

Question Number 40885 by prof Abdo imad last updated on 28/Jul/18 $${prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}{p}}…

f-x-f-1-1-x-1-1-x-1-x-f-x-

Question Number 171955 by infinityaction last updated on 22/Jun/22 $$\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)+\:\boldsymbol{{f}}\left(\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{x}}\left(\mathrm{1}−\boldsymbol{{x}}\right)} \\ $$$$\:\:\:\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:=\:\:??\:\:\:\:\:\:\:\:\: \\ $$ Answered by thfchristopher last updated on 22/Jun/22 $$\mathrm{1}+\frac{\mathrm{1}}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$=\frac{{x}−{x}^{\mathrm{2}} +\mathrm{1}}{{x}\left(\mathrm{1}−{x}\right)}…