Menu Close

Category: Relation and Functions

1-prove-that-n-2-n-inyegr-x-2n-1-x-1-x-1-k-1-n-1-x-2-2cos-kpi-n-x-1-2-find-the-value-of-0-pi-ln-x-2-2xcost-1-dt-

Question Number 40882 by prof Abdo imad last updated on 28/Jul/18 $$\left.\mathrm{1}\right){prove}\:{that}\:\forall{n}\geqslant\mathrm{2}\left({n}\:{inyegr}\right) \\ $$$${x}^{\mathrm{2}{n}} −\mathrm{1}=\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} {ln}\left({x}^{\mathrm{2}} −\mathrm{2}{xcost}\:+\mathrm{1}\right){dt} \\ $$…

let-u-0-gt-0-and-n-N-u-n-1-u-n-1-u-n-1-prove-that-u-n-is-increasing-and-lim-u-n-2-by-consideringthe-function-t-1-2t-x-prove-that-n-N-k-1-n-1-2k-x-1-2-ln-1-2n-x-

Question Number 40878 by prof Abdo imad last updated on 28/Jul/18 $${let}\:{u}_{\mathrm{0}} >\mathrm{0}\:{and}\:\forall{n}\in{N} \\ $$$${u}_{{n}+\mathrm{1}} ={u}_{{n}} \:+\frac{\mathrm{1}}{{u}_{{n}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left({u}_{{n}} \right){is}\:{increasing}\:{and}\:{lim}\:{u}_{{n}} \:=+\infty \\ $$$$\left.\mathrm{2}\right){by}\:{consideringthe}\:{function}\varphi\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}{t}+{x}} \\…

what-is-k-such-that-the-circle-x-2-y-2-4-intersect-the-parabola-y-x-2-k-

Question Number 106408 by bemath last updated on 05/Aug/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{4}\:\mathrm{intersect} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{y}=\:\mathrm{x}^{\mathrm{2}} +\mathrm{k}\: \\ $$ Answered by 1549442205PVT last updated on 06/Aug/20 $$\mathrm{The}\:\mathrm{circle}\:\mathrm{intersection}\:\mathrm{the}\:\mathrm{parabol}…

show-that-x-1-x-2-x-n-R-n-k-1-n-x-k-2-n-k-1-n-x-k-2-a-b-gt-0-p-x-x-n-ax-b-0-could-not-have-more-than-3-reals-solutions-

Question Number 106315 by pticantor last updated on 04/Aug/20 $$\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\circledast\forall\:\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,…..,\boldsymbol{{x}}_{\boldsymbol{{n}}\:} \right)\in\mathbb{R}^{\boldsymbol{{n}}} \\ $$$$\left(\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{x}}_{\boldsymbol{{k}}} \right)^{\mathrm{2}} \leqslant\boldsymbol{{n}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{x}}_{\boldsymbol{{k}}} ^{\mathrm{2}} \\…

If-g-x-x-x-and-lim-x-2-f-x-f-2-x-2-ax-b-4-3-find-the-value-of-f-g-1-

Question Number 106309 by bemath last updated on 04/Aug/20 $$\mathrm{If}\:\mathrm{g}\left(\mathrm{x}\right)=\:\mathrm{x}+\sqrt{\mathrm{x}}\:\mathrm{and}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{f}\left(\mathrm{x}\right)−\mathrm{f}\left(\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{ax}+\mathrm{b}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{f}\circ\mathrm{g}\right)'\left(\mathrm{1}\right). \\ $$ Answered by bobhans last updated on 05/Aug/20 $$\mathrm{g}\left(\mathrm{x}\right)=\:\mathrm{x}+\sqrt{\mathrm{x}}\:\Rightarrow\mathrm{g}'\left(\mathrm{x}\right)=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\:;\:\mathrm{g}'\left(\mathrm{1}\right)=\:\frac{\mathrm{3}}{\mathrm{2}} \\…

If-root-of-equation-x-3-px-2-qx-r-0-are-in-AP-than-what-is-the-relation-between-p-q-and-r-

Question Number 106138 by bobhans last updated on 03/Aug/20 $$\mathrm{If}\:\mathrm{root}\:\mathrm{of}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{3}} −\mathrm{px}^{\mathrm{2}} +\mathrm{qx}−\mathrm{r}=\mathrm{0}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{AP}\:\mathrm{than}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{p},\mathrm{q} \\ $$$$\mathrm{and}\:\mathrm{r}\:? \\ $$ Answered by bemath last updated on 03/Aug/20…

let-f-x-e-2x-ln-3-x-2-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-

Question Number 106133 by mathmax by abdo last updated on 02/Aug/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{−\mathrm{2x}} \mathrm{ln}\left(\mathrm{3}−\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$ Answered by mathmax…

let-g-x-arcatan-1-x-ln-1-2x-1-find-g-n-x-and-g-n-0-2-developp-f-at-integr-serie-3-calculate-1-4-1-4-g-x-dx-

Question Number 106134 by mathmax by abdo last updated on 03/Aug/20 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\mathrm{arcatan}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{2x}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\mathrm{g}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\mathrm{3}/\:\mathrm{calculate}\:\:\int_{−\frac{\mathrm{1}}{\mathrm{4}}} ^{\frac{\mathrm{1}}{\mathrm{4}}} \:\mathrm{g}\left(\mathrm{x}\right)\mathrm{dx} \\ $$ Terms…