Question Number 40123 by maxmathsup by imad last updated on 15/Jul/18 $${study}\:{the}\:{convergence}\:{of} \\ $$$${v}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)} \\ $$ Answered by math khazana…
Question Number 40121 by maxmathsup by imad last updated on 15/Jul/18 $${find}\:{assymptotes}\:{of}\:{f}\left({x}\right)=\sqrt{{x}^{\mathrm{4}} \:−{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}\:−\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 40122 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{k}\right)!} \\ $$$${prove}\:{that}\:\left({u}_{{n}} \right)\:{converges} \\ $$ Terms of Service Privacy…
Question Number 40118 by maxmathsup by imad last updated on 15/Jul/18 $${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{\mathrm{2}{x}}{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}\:−{cosx} \\ $$ Commented by math khazana by abdo last updated on 19/Jul/18…
Question Number 40116 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{f}\left({x}\right)\:=\:\frac{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}{{x}}\:\:{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${prove}\:{that}\:\:{f}^{−\mathrm{1}} \left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:\:\:\left({x}\rightarrow\mathrm{0}\right) \\ $$ Terms of Service Privacy…
Question Number 40113 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{f}\left({x}\right)={ln}\left(\mathrm{2}+{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{give}\:{D}_{{n}} \left(\mathrm{0}\right)\:{of}\:{f} \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Commented by prof Abdo imad last…
Question Number 40114 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{g}\left({x}\right)=\:{cos}\left({x}+\mathrm{1}\right) \\ $$$${developp}\:{g}\:{at}\:{integr}\:{serie} \\ $$ Commented by prof Abdo imad last updated on 17/Jul/18…
Question Number 40107 by maxmathsup by imad last updated on 15/Jul/18 $${prove}\:{the}\:{relations} \\ $$$$\left.\mathrm{1}\left.\right)\left.\:\forall{t}\:\in\right]\mathrm{0},\mathrm{1}\right]\:\:\:{arctan}\left(\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}}\right)={arccost} \\ $$$$\left.\mathrm{2}\right)\:\forall\:{t}\in\left[−\mathrm{1},\mathrm{1}\right]\:\:\:\:\mathrm{2}\:{arccos}\sqrt{\frac{\mathrm{1}+{t}}{\mathrm{2}}}\:={arccost} \\ $$ Answered by math khazana by abdo…
Question Number 40105 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:\:{f}\left({x}\right)\:=\:{x}^{{n}} \:{e}^{−\mathrm{2}{nx}} \:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$ Commented by maxmathsup by imad last…
Question Number 40106 by maxmathsup by imad last updated on 15/Jul/18 $${study}\:{and}\:{give}\:{the}\:{graph}\:{for}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \\ $$ Answered by math khazana by abdo last updated on…