Question Number 40104 by maxmathsup by imad last updated on 15/Jul/18 $${find}\:{number}\:{of}\:{solution}\:{for}\:{the}\:{equation} \\ $$$$\frac{{e}^{{x}} }{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{1}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 40102 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{f}\left({x}\right)\:=\:\frac{\mid{x}\mid}{\left(\mathrm{1}+\mid\mathrm{1}−{x}^{\mathrm{2}} \mid\right)^{{n}} } \\ $$$${study}\:{tbe}\:{derivability}\:{of}\:{f}\:{at}\:{points}\:\mathrm{0}\:{and}\:\mathrm{1}\:\left({n}\:{natural}\:{integr}\right) \\ $$ Answered by math khazana by abdo last…
Question Number 40100 by maxmathsup by imad last updated on 15/Jul/18 $${solve}\:\:\:{arctan}\left(\mathrm{2}{x}\right)\:+{arctan}\left(\mathrm{3}{x}\right)=\frac{\pi}{\mathrm{4}} \\ $$ Commented by math khazana by abdo last updated on 26/Jul/18 $$\Rightarrow{tan}\left\{{arctan}\left(\mathrm{2}{x}\right)+{arctan}\left(\mathrm{3}{x}\right)\right\}=\mathrm{1}\:\Rightarrow…
Question Number 40101 by maxmathsup by imad last updated on 15/Jul/18 $${study}\:\:{the}\:{variation}\:{of}\:{f}\left({x}\right)={arcsin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)\:{and}\:{give}\:{its}\:{graph} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 40099 by maxmathsup by imad last updated on 15/Jul/18 $${solve}\:\:{arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:=\frac{\pi}{\mathrm{3}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 40098 by maxmathsup by imad last updated on 15/Jul/18 $${solve}\:\:{arcsin}\left({sinx}\right)\:=\frac{\pi}{\mathrm{9}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 40097 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{f}\left({x}\right)={ln}\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{D}_{{f}} \:\:\:\:{and}\:{find}\:{the}\:{assymptotes}\:{to}\:{C}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{and}\:{give}\:{the}\:{variation}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{graph}\:{of}\:{f} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}\:} \:\:\:{at}\:{point}\:\:{E}\left(\frac{\mathrm{1}}{\mathrm{2}},{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:\:\:\int_{\mathrm{0}}…
Question Number 40095 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{f}\left({x}\right)\:={cos}\left({x}\right){cos}\left(\frac{\mathrm{1}}{{x}}\right)\:\:{is}\:{f}\:\:{have}\:{a}\:{limit}\:{at}\:{point}\:\mathrm{0}? \\ $$$$ \\ $$ Answered by math khazana by abdo last updated on…
Question Number 40091 by maxmathsup by imad last updated on 15/Jul/18 $${find}\:{a}\:{equivalent}\:{to}\:{f}\left({x}\right)={cos}\left({sinx}\right)\:{for}\:{x}\in{v}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{equivalent}\:{to}\:{g}\left({x}\right)=\:{tan}\left(\frac{\pi}{\mathrm{2}{x}+\mathrm{1}}\right)\:\left({x}\rightarrow\mathrm{0}\right) \\ $$ Commented by math khazana by abdo last updated on…
Question Number 40092 by maxmathsup by imad last updated on 15/Jul/18 $${calculate}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{{x}}\:{tan}\left(\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\right) \\ $$ Commented by math khazana by abdo last updated on 26/Jul/18…