Menu Close

Category: Relation and Functions

find-radius-of-S-x-n-1-x-n-n-2-and-calculate-its-sum-2-find-n-1-1-n-2-and-n-1-1-n-2-2-n-

Question Number 39517 by math khazana by abdo last updated on 07/Jul/18 $${find}\:{radius}\:{of}\:\:{S}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${and}\:{calculate}\:{its}\:{sum} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:\:{and}\:\:\sum_{{n}=\mathrm{1}} ^{\infty}…

1-decompose-the-fraction-F-x-1-x-3-x-1-4-2-find-the-sumA-n-1-1-n-3-n-1-4-and-B-n-1-1-n-n-3-n-1-4-3-what-is-the-value-of-n-0-1-n-1-

Question Number 104895 by mathmax by abdo last updated on 24/Jul/20 $$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{the}\:\mathrm{fraction}\:\:\mathrm{F}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{sumA}\:=\:\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} }\:\:\mathrm{and}\:\mathrm{B}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty\:} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{3}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} }…

1-decompose-the-fraction-F-x-1-x-3-x-1-3-2-find-the-sum-n-1-1-n-n-3-n-1-3-

Question Number 104891 by mathmax by abdo last updated on 24/Jul/20 $$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{F}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{3}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Answered by…

let-x-x-3-x-1-1-prove-that-have-one-real-root-2-determine-a-approximate-value-for-by-use-of-newton-method-3-factorise-inside-R-x-f-x-4-calculste-dx-x-

Question Number 104772 by mathmax by abdo last updated on 23/Jul/20 $$\mathrm{let}\:\varphi\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{x}+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{prove}\:\mathrm{that}\:\varphi\:\mathrm{have}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\alpha \\ $$$$\left.\mathrm{2}\right)\mathrm{determine}\:\mathrm{a}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{for}\:\alpha\:\:\mathrm{by}\:\mathrm{use}\:\mathrm{of}\:\mathrm{newton}\:\mathrm{method} \\ $$$$\left.\mathrm{3}\right)\mathrm{factorise}\:\mathrm{inside}\:\mathrm{R}\left(\mathrm{x}\right)\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{4}\right)\:\mathrm{calculste}\:\int\:\frac{\mathrm{dx}}{\varphi\left(\mathrm{x}\right)} \\ $$ Answered by…