Question Number 104772 by mathmax by abdo last updated on 23/Jul/20 $$\mathrm{let}\:\varphi\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{x}+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{prove}\:\mathrm{that}\:\varphi\:\mathrm{have}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\alpha \\ $$$$\left.\mathrm{2}\right)\mathrm{determine}\:\mathrm{a}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{for}\:\alpha\:\:\mathrm{by}\:\mathrm{use}\:\mathrm{of}\:\mathrm{newton}\:\mathrm{method} \\ $$$$\left.\mathrm{3}\right)\mathrm{factorise}\:\mathrm{inside}\:\mathrm{R}\left(\mathrm{x}\right)\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{4}\right)\:\mathrm{calculste}\:\int\:\frac{\mathrm{dx}}{\varphi\left(\mathrm{x}\right)} \\ $$ Answered by…
Question Number 104771 by mathmax by abdo last updated on 23/Jul/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{3}} \:+\mathrm{x}−\mathrm{3} \\ $$$$\left.\mathrm{1}\left.\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{f}\:\mathrm{have}\:\mathrm{one}\:\mathrm{root}\:\mathrm{real}\:\alpha_{\mathrm{0}} \:\:\:\mathrm{and}\:\alpha_{\mathrm{0}} \:\in\:\right]\mathrm{1},\mathrm{2}\left[\right. \\ $$$$\left.\mathrm{2}\right)\:\mathrm{factorize}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{inside}\:\mathrm{R}\left[\mathrm{x}\right]\:\mathrm{and}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$$$\left.\mathrm{3}\:\right)\:\mathrm{find}\:\int\:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)} \\ $$ Answered by…
Question Number 39204 by math khazana by abdo last updated on 03/Jul/18 $${study}\:{tbe}\:{variation}\:{of}\:{f}\left({x}\right)\:=\left(\mathrm{2}{x}+\mathrm{1}\right){ln}\left(\mathrm{1}+{e}^{−{x}} \right) \\ $$$${and}\:{give}\:{its}\:{graph} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{4}} \:{f}\left({x}\right){dx}\:. \\ $$ Terms of Service…
Question Number 39203 by math khazana by abdo last updated on 03/Jul/18 $${study}\:{and}\:{give}\:{the}\:{graph}\:{of}\: \\ $$$${f}\left({x}\right)\:=\:\:\frac{{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+\mathrm{3}\:{e}^{{x}} } \\ $$ Terms of Service Privacy…
Question Number 39121 by rahul 19 last updated on 02/Jul/18 $$\mathrm{Find}\:\mathrm{domain}\:\mathrm{of}\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:? \\ $$$$\mathrm{Also}\:\mathrm{prove}\:\mathrm{that}\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{L}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:=\:\mathrm{1}\:? \\ $$ Commented by math khazana by abdo…
Question Number 39038 by maxmathsup by imad last updated on 01/Jul/18 $${let}\:{f}\left({z}\right)\:=\:\frac{{z}}{{z}^{\mathrm{2}} \:−{z}+\mathrm{2}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by prof Abdo imad last updated on…
Question Number 39018 by maxmathsup by imad last updated on 01/Jul/18 $${find}\:{nature}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}+{cos}\left({n}\left[{x}\right]\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 38942 by math khazana by abdo last updated on 01/Jul/18 $${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{cos}\left({nx}\right)\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{sin}\left({nx}\right) \\ $$ Commented by prof Abdo…
Question Number 169987 by cortano1 last updated on 13/May/22 Answered by greougoury555 last updated on 13/May/22 $${PT}_{\mathrm{1}} \:\equiv\:−\mathrm{32}{x}+\mathrm{30}{y}=\mathrm{254} \\ $$$${PT}_{\mathrm{2}} \:\equiv\:\mathrm{3}{x}−\mathrm{5}{y}\:=\:\mathrm{9} \\ $$$$\:\mathrm{tan}\:\alpha\:=\:\frac{\frac{\mathrm{16}}{\mathrm{15}}−\frac{\mathrm{3}}{\mathrm{5}}}{\mathrm{1}+\frac{\mathrm{48}}{\mathrm{75}}}\:=\:\frac{\mathrm{35}}{\mathrm{123}}\: \\ $$…
Question Number 38898 by math khazana by abdo last updated on 01/Jul/18 $${find}\:{nature}\:{od}\:{the}\:{seri}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{1}+{n}\left[{x}\right]^{\mathrm{3}} } \\ $$ Commented by math khazana by abdo…