Menu Close

Category: Relation and Functions

let-f-x-x-3-x-3-1-prove-that-f-have-one-root-real-0-and-0-1-2-2-factorize-f-x-inside-R-x-and-C-x-3-find-dx-f-x-

Question Number 104771 by mathmax by abdo last updated on 23/Jul/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{3}} \:+\mathrm{x}−\mathrm{3} \\ $$$$\left.\mathrm{1}\left.\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{f}\:\mathrm{have}\:\mathrm{one}\:\mathrm{root}\:\mathrm{real}\:\alpha_{\mathrm{0}} \:\:\:\mathrm{and}\:\alpha_{\mathrm{0}} \:\in\:\right]\mathrm{1},\mathrm{2}\left[\right. \\ $$$$\left.\mathrm{2}\right)\:\mathrm{factorize}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{inside}\:\mathrm{R}\left[\mathrm{x}\right]\:\mathrm{and}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$$$\left.\mathrm{3}\:\right)\:\mathrm{find}\:\int\:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)} \\ $$ Answered by…

study-tbe-variation-of-f-x-2x-1-ln-1-e-x-and-give-its-graph-2-calculate-0-4-f-x-dx-

Question Number 39204 by math khazana by abdo last updated on 03/Jul/18 $${study}\:{tbe}\:{variation}\:{of}\:{f}\left({x}\right)\:=\left(\mathrm{2}{x}+\mathrm{1}\right){ln}\left(\mathrm{1}+{e}^{−{x}} \right) \\ $$$${and}\:{give}\:{its}\:{graph} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{4}} \:{f}\left({x}\right){dx}\:. \\ $$ Terms of Service…

Find-domain-of-1-1-x-x-Also-prove-thatL-x-0-1-1-x-x-1-

Question Number 39121 by rahul 19 last updated on 02/Jul/18 $$\mathrm{Find}\:\mathrm{domain}\:\mathrm{of}\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:? \\ $$$$\mathrm{Also}\:\mathrm{prove}\:\mathrm{that}\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{L}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:=\:\mathrm{1}\:? \\ $$ Commented by math khazana by abdo…

Question-169987

Question Number 169987 by cortano1 last updated on 13/May/22 Answered by greougoury555 last updated on 13/May/22 $${PT}_{\mathrm{1}} \:\equiv\:−\mathrm{32}{x}+\mathrm{30}{y}=\mathrm{254} \\ $$$${PT}_{\mathrm{2}} \:\equiv\:\mathrm{3}{x}−\mathrm{5}{y}\:=\:\mathrm{9} \\ $$$$\:\mathrm{tan}\:\alpha\:=\:\frac{\frac{\mathrm{16}}{\mathrm{15}}−\frac{\mathrm{3}}{\mathrm{5}}}{\mathrm{1}+\frac{\mathrm{48}}{\mathrm{75}}}\:=\:\frac{\mathrm{35}}{\mathrm{123}}\: \\ $$…