Question Number 169922 by cortano1 last updated on 12/May/22 $$\:\:{Let}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{7}}{{x}+\mathrm{1}}\:.\:{Compute}\:{f}^{\mathrm{1989}} \left({x}\right). \\ $$$$\:{note}\:{f}^{\mathrm{2}} \left({x}\right)=\:{f}\left({f}\left({x}\right)\right) \\ $$ Answered by floor(10²Eta[1]) last updated on 12/May/22 $$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\mathrm{f}\left(\frac{\mathrm{2x}−\mathrm{7}}{\mathrm{x}+\mathrm{1}}\right)=\frac{\mathrm{2}\frac{\mathrm{2x}−\mathrm{7}}{\mathrm{x}+\mathrm{1}}−\mathrm{7}}{\frac{\mathrm{2x}−\mathrm{7}}{\mathrm{x}+\mathrm{1}}+\mathrm{1}}=\frac{−\mathrm{3x}−\mathrm{21}}{\mathrm{3x}−\mathrm{6}}=\frac{−\mathrm{x}−\mathrm{7}}{\mathrm{x}−\mathrm{2}} \\…
Question Number 38740 by abdo.msup.com last updated on 29/Jun/18 $${find}\:{tbe}\:{polynom}\:{p}\:{withdegre}\:\mathrm{5}\:{wich}\:{verify} \\ $$$${p}\left({x}+\mathrm{1}\right)−{p}\left({x}\right)={x}^{\mathrm{4}} \:\:{and}\:{p}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${for}\:{that}\:{put}\:{p}\left({x}\right)={ax}^{\mathrm{5}} \:+{bx}^{\mathrm{4}} \:+{cx}^{\mathrm{3}} \:+{dx}^{\mathrm{2}} \\ $$$$+{ex}\:+{f}\:\:{and}\:{find}\:{the}\:{coefficients}. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{interms}\:{of}\:{n}\:{the}\:{value}\:{of} \\ $$$${sum}\:\mathrm{1}\:+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}}…
Question Number 38726 by maxmathsup by imad last updated on 28/Jun/18 $${let}\:{f}\left({x}\right)=\frac{{x}+\mathrm{1}}{\mathrm{2}\:+{e}^{−\mathrm{2}{x}} }\:\:\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by math khazana by abdo last updated on 01/Jul/18…
Question Number 38725 by maxmathsup by imad last updated on 28/Jun/18 $${let}\:{f}\left({x}\right)={ln}\left(\mathrm{1}+\:{e}^{−{x}} \right)\:\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$ Commented by abdo.msup.com last updated on 29/Jun/18 $${we}\:{have}\:{ln}\left(\mathrm{1}+{u}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}}…
Question Number 38723 by maxmathsup by imad last updated on 28/Jun/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsin}\left(\mathrm{3}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$ Commented by math khazana by abdo last…
Question Number 38721 by maxmathsup by imad last updated on 28/Jun/18 $${let}\:\:{f}\left({x}\right)=\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }\:\:−{x}\sqrt{\mathrm{2}}\:\:+\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow+\infty} \:{f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{lim}_{{x}\rightarrow+\infty} \:\:\frac{{f}\left({x}\right)}{{x}}\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\frac{{f}\left({x}\right)}{{x}} \\ $$$$\left.\mathrm{3}\right){give}\:{the}\:{assymtote}\:{to}\:{graph}\:{C}_{{f}} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{assymtote}\:{to}\:{C}_{{f}}…
Question Number 38722 by maxmathsup by imad last updated on 28/Jun/18 $${let}\:{f}\left({x}\right)=\:\left({x}+\mathrm{1}\right){e}^{−{x}} \:\:{and}\:\:{g}\left({x}\right)={ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{fog}\left({x}\right)\:{and}\:{gof}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\left({fog}\right)^{'} \left({x}\right)\:{and}\:\left({gof}\right)^{'} \left({x}\right). \\ $$ Commented by math…
Question Number 38699 by Tinkutara last updated on 28/Jun/18 Answered by behi83417@gmail.com last updated on 28/Jun/18 $${y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}\sqrt{\left({a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}\right)\left({a}^{\mathrm{2}} {sin}^{\mathrm{2}}…
Question Number 38692 by Zuarkton last updated on 28/Jun/18 $${If}\:{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1} \\ $$$${g}\left({x}\right)=\sqrt{{x}}+\mathrm{3} \\ $$$${h}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${then}\:{hog}^{\mathrm{2}} \:{of}\:\left(\mathrm{2}\right)=? \\ $$ Answered by MJS last updated on…
Question Number 38643 by maxmathsup by imad last updated on 27/Jun/18 $${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}}{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+…+{n}^{\mathrm{4}} } \\ $$ Commented by abdo mathsup 649 cc last…