Question Number 38456 by maxmathsup by imad last updated on 25/Jun/18 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\:\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$ Terms of Service…
Question Number 38367 by Zuarkton last updated on 24/Jun/18 $${If}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{1}\:{then}\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$ Commented by rahul 19 last updated on 24/Jun/18 $$\left({x}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$…
Question Number 38323 by math khazana by abdo last updated on 24/Jun/18 $${find}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{4}{n}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by math khazana by abdo…
Question Number 103763 by mathmax by abdo last updated on 17/Jul/20 $$\mathrm{calculate}\left\{\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \right\}×\left\{\sum_{\mathrm{n}=\mathrm{o}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{n}+\mathrm{1}}\right\} \\ $$ Answered by mathmax by…
Question Number 103753 by bobhans last updated on 17/Jul/20 $$\rightarrow\begin{cases}{{g}\left({x}\right)=\frac{\mathrm{6}}{{x}−\mathrm{2}}}\\{\left({goh}\right)\left(\mathrm{3}\right)\:=\:\mathrm{17}}\\{{h}\left({x}\right)=\:{ax}^{\mathrm{2}} −\mathrm{1}}\end{cases} \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\: \\ $$ Answered by bemath last updated on 17/Jul/20 Terms of Service…
Question Number 38195 by maxmathsup by imad last updated on 22/Jun/18 $${let}\:{x}\geqslant\mathrm{1}\:{and}\:\delta\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{{x}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\delta\left({x}\right)\:{interms}\:{of}\:\xi\left({x}\right)\:{if}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{2}\right){find}\:\:\delta\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }…
Question Number 38177 by Tinkutara last updated on 22/Jun/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 38112 by maxmathsup by imad last updated on 21/Jun/18 $${prove}\:{that}\:\:{arctan}\left({x}\right)=\:\frac{{i}}{\mathrm{2}}{ln}\left(\frac{{i}+{x}}{{i}−{x}}\right)\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$ Commented by prof Abdo imad last updated on 24/Jun/18 $${we}\:{have}\:{i}+{x}={x}+{i}=\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\left(\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}}…
Question Number 38109 by maxmathsup by imad last updated on 21/Jun/18 $$\left.\mathrm{1}\right)\:{find}\:\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}} \\ $$$$ \\ $$ Commented by…
Question Number 38108 by maxmathsup by imad last updated on 21/Jun/18 $${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$ Commented by prof Abdo imad last updated…