Question Number 37819 by prof Abdo imad last updated on 17/Jun/18 $${study}\:{the}\:{convergence}\:\:{of} \\ $$$${u}_{{n}+\mathrm{1}} ={u}_{{n}} \:+\:{ln}\left(\mathrm{1}+{e}^{−{u}_{{n}} } \right)\:\:{with}\:{u}_{\mathrm{0}} =\mathrm{0} \\ $$ Terms of Service Privacy…
Question Number 37817 by prof Abdo imad last updated on 17/Jun/18 $${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)\:{with}\:{x} \\ $$$${from}\:{R}\:{and}\:{x}\neq\mathrm{0} \\ $$ Commented by prof Abdo imad last…
Question Number 168800 by MikeH last updated on 17/Apr/22 $$\mathrm{If}\:\mathrm{the}\:\mathrm{function}\:{f}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{in}\:\left[{a},{b}\right] \\ $$$$\mathrm{express}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left(\frac{{k}}{{n}}\right)\:\mathrm{as}\:\mathrm{a}\:\mathrm{definite} \\ $$$$\mathrm{integral}. \\ $$ Commented by safojontoshtemirov last updated on…
Question Number 37355 by math khazana by abdo last updated on 12/Jun/18 $$\:{let}\:\Sigma\:{a}_{{n}} {x}^{{n}} \:\:\:{with}\:{radius}\:{of}\:{convergence}\:{R} \\ $$$${prove}\:{that}\:{R}\:=\:\frac{\mathrm{1}}{{lim}_{{n}\rightarrow+\infty} \:{sup}^{{n}} \sqrt{\mid{a}_{{n}} \mid}}\:\:. \\ $$ Terms of Service…
Question Number 102883 by bobhans last updated on 11/Jul/20 $${If}\:{x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}\:=\:\mathrm{0}\:{has}\:{the}\:{roots}\:{are}\: \\ $$$$\bar {\alpha}\:\beta\:{and}\:\gamma\:.\:{find}\:{the}\:{value}\:{of} \\ $$$$\alpha\beta^{\mathrm{2}} +\beta\gamma^{\mathrm{2}} +\gamma\alpha^{\mathrm{2}} \:{in}\:{terms}\:{a},{b}\:{and}\:{c} \\ $$ Answered by bemath…
Question Number 37342 by math khazana by abdo last updated on 12/Jun/18 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:{x}^{{n}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\mathrm{2}^{{n}} }\:. \\…
Question Number 37339 by math khazana by abdo last updated on 12/Jun/18 $${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{1}\:+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+…+{n}^{\mathrm{3}} } \\ $$ Commented by math khazana by…
Question Number 37341 by math khazana by abdo last updated on 12/Jun/18 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{3}}{{n}^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by math khazana by abdo…
Question Number 37333 by math khazana by abdo last updated on 12/Jun/18 $${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{convergence}\:{of}\:{this}\:{serie} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }…
Question Number 37334 by math khazana by abdo last updated on 12/Jun/18 $${study}\:{the}\:{convergence}\:{of} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$ Commented by…