Menu Close

Category: Relation and Functions

1-calculate-0-dx-1-e-nx-with-n-integr-natural-and-n-1-2-conclude-the-value-of-k-1-1-k-1-k-

Question Number 65383 by mathmax by abdo last updated on 29/Jul/19 $$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{e}^{{nx}} }\:\:\:{with}\:{n}\:{integr}\:{natural}\:\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{conclude}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}} \\ $$ Commented by mathmax…

let-U-n-a-sequence-wich-verify-U-n-U-n-1-U-n-2-n-1-n-for-all-integr-n-calculate-interms-of-n-A-n-k-0-n-1-k-U-k-the-first-term-is-U-0-

Question Number 65297 by mathmax by abdo last updated on 28/Jul/19 $${let}\:\:\:{U}_{{n}} \:\:{a}\:{sequence}\:{wich}\:{verify}\:\:{U}_{{n}} \:+{U}_{{n}+\mathrm{1}} +{U}_{{n}+\mathrm{2}} \:={n}\left(−\mathrm{1}\right)^{{n}} \\ $$$${for}\:{all}\:{integr}\:{n}\:\:\:{calculate}\:{interms}\:{of}\:{n} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:{U}_{{k}} \\…

let-A-1-2-2-1-1-find-e-A-and-e-A-2-calculate-ch-A-and-sh-A-

Question Number 130771 by mathmax by abdo last updated on 28/Jan/21 $$\mathrm{let}\:\mathrm{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\mathrm{find}\:\mathrm{e}^{\mathrm{A}} \:\mathrm{and}\:\mathrm{e}^{−\mathrm{A}} \\ $$$$\left.\mathrm{2}\right)\mathrm{calculate}\:\mathrm{ch}\left(\mathrm{A}\right)\mathrm{and}\:\mathrm{sh}\left(\mathrm{A}\right) \\ $$ Answered by Olaf last updated on…

U-n-is-a-sequence-wich-verify-U-n-U-n-1-n-for-all-integr-n-1-calculate-U-n-intrem-of-n-2-find-nature-of-the-serie-U-n-n-2-

Question Number 65193 by mathmax by abdo last updated on 26/Jul/19 $${U}_{{n}} \:{is}\:{a}\:{sequence}\:{wich}\:{verify}\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} ={n}\:{for}\:{all}\:{integr}\:{n} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{intrem}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\frac{{U}_{{n}} }{{n}^{\mathrm{2}} } \\ $$ Commented…

f-0-pi-0-1-x-sin-x-f-injective-f-surjective-f-bijective-

Question Number 130714 by greg_ed last updated on 28/Jan/21 $$\left.{f}\left.\::\:\right]\mathrm{0}\:,\:\pi\right]\:\rightarrow\:\left[\mathrm{0}\:,\:\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}\:\:\:\: \:\:\:\mathrm{sin}\:{x} \\ $$$${f}\:\:\mathrm{injective}\:?\:{f}\:\mathrm{surjective}\:?\:{f}\:\mathrm{bijective}\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-130699

Question Number 130699 by LYKA last updated on 28/Jan/21 Answered by MJS_new last updated on 28/Jan/21 $${z}=\mathrm{ln}\:\left({x}−\mathrm{2}{y}+\mathrm{3}\right) \\ $$$${x}−\mathrm{2}{y}+\mathrm{3}>\mathrm{0}\:\Leftrightarrow\:{y}<\frac{{x}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}\wedge{x}\in\mathbb{R}\:\Rightarrow\:{z}\in\mathbb{R} \\ $$ Terms of Service Privacy…