Menu Close

Category: Relation and Functions

let-D-D-0-1-and-f-z-n-0-a-n-z-n-is-a-holomorphe-function-f-x-lt-1-1-z-prove-that-a-n-n-1-1-1-n-n-n-1-e-

Question Number 37294 by math khazana by abdo last updated on 11/Jun/18 $${let}\:{D}\:={D}\left(\mathrm{0},\mathrm{1}\right)\:{and}\:{f}\left({z}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {z}^{{n}} \:{is}\:{a}\:{holomorphe} \\ $$$${function}\:/\:\:\mid{f}\left({x}\right)\mid<\:\:\frac{\mathrm{1}}{\mathrm{1}−\mid{z}\mid}\:\:{prove}\:{that} \\ $$$$\mid{a}_{{n}} \mid\leqslant\:\left({n}+\mathrm{1}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \leqslant\left({n}+\mathrm{1}\right){e}. \\ $$…

let-f-x-x-1-x-2-x-4-1-find-f-n-x-2-calculate-f-n-0-3-developp-f-at-integr-serie-

Question Number 37282 by abdo.msup.com last updated on 11/Jun/18 $${let}\:{f}\left({x}\right)=\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right){developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by abdo.msup.com…

let-f-x-1-1-x-n-with-n-integr-1-find-f-x-and-f-x-2-find-the-poles-of-f-3-calculate-f-n-0-4-developp-f-at-integr-serie-

Question Number 37277 by abdo.msup.com last updated on 11/Jun/18 $${let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right){find}\:{f}^{'} \left({x}\right)\:{and}\:{f}^{''} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{poles}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right){calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{4}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented…

f-100x-1-50x-1-2x-1-amp-f-1-3-p-p-

Question Number 102721 by bramlex last updated on 10/Jul/20 $$\mathrm{f}\left(\frac{\mathrm{100x}−\mathrm{1}}{\mathrm{50x}+\mathrm{1}}\right)\:=\:\mathrm{2x}−\mathrm{1}\:\&\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{3}\right)=\:\mathrm{p} \\ $$$$\mathrm{p}=? \\ $$ Commented by bramlex last updated on 10/Jul/20 $$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{3}\right)=\mathrm{p}\:\Leftrightarrow\mathrm{f}\left(\mathrm{p}\right)=\mathrm{3} \\…