Menu Close

Category: Relation and Functions

f-is-a-real-function-derivable-on-0-1-f-0-0-and-f-1-1-prove-that-n-N-x-i-1-i-n-seqence-of-reals-with-x-i-x-j-if-i-j-and-k-1-n-f-x-k-n-

Question Number 36927 by maxmathsup by imad last updated on 07/Jun/18 $${f}\:{is}\:{a}\:{real}\:{function}\:{derivable}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:/{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${prove}\:{that}\:\forall{n}\in{N}\:\:\exists\:\:\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:{seqence}\:{of}\:{reals}\:{with}\:{x}_{{i}} \neq{x}_{{j}} \:{if}\:{i}\neq{j} \\ $$$${and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}^{'} \left({x}_{{k}} \right)={n}. \\…

u-n-is-a-sequence-and-lim-n-u-n-l-let-v-n-1-2-n-k-0-n-C-n-k-u-k-prove-that-v-n-l-n-

Question Number 36922 by maxmathsup by imad last updated on 07/Jun/18 $$\left({u}_{{n}} \right){is}\:{a}\:{sequence}\:{and}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} ={l}\:{let} \\ $$$${v}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \:{u}_{{k}} \:\:{prove}\:{that}\:{v}_{{n}} \:\rightarrow{l}\left({n}\rightarrow+\infty\:\right)…

for-t-0-and-f-t-t-1-t-let-S-n-k-1-n-f-k-n-2-study-the-convergence-of-S-n-

Question Number 36923 by maxmathsup by imad last updated on 07/Jun/18 $${for}\:{t}\geqslant\mathrm{0}\:{and}\:\:{f}\left({t}\right)=\:\frac{{t}}{\:\sqrt{\mathrm{1}+{t}}}\:\:{let} \\ $$$${S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:\:{study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \:\:. \\ $$ Commented by abdo.msup.com last…

let-from-R-and-u-n-2cos-u-n-1-u-n-2-0-withn-2-find-u-n-and-study-its-convrgence-

Question Number 36920 by maxmathsup by imad last updated on 07/Jun/18 $${let}\:\alpha\:{from}\:{R}\:{and}\:\:{u}_{{n}} \:−\mathrm{2}{cos}\left(\alpha\right){u}_{{n}−\mathrm{1}} \:+{u}_{{n}−\mathrm{2}} =\mathrm{0}\:\:\:{withn}\geqslant\mathrm{2} \\ $$$${find}\:{u}_{{n}} \:{and}\:{study}\:{its}\:{convrgence}. \\ $$ Commented by math khazana by…