Menu Close

Category: Relation and Functions

let-f-x-x-2-x-3-4x-3-1-calculate-f-n-x-2-developp-f-at-integr-serie-

Question Number 35988 by abdo mathsup 649 cc last updated on 26/May/18 $${let}\:{f}\left({x}\right)\:=\:\frac{{x}+\mathrm{2}}{{x}^{\mathrm{3}} −\mathrm{4}{x}\:+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by abdo mathsup…

let-f-x-1-n-x-2-nx-3-with-n-integr-1-calculate-lim-x-and-lim-x-f-x-2-calculate-f-x-3-give-the-equation-of-assymptote-of-f-at-point-A-1-f-1-4-calculate-lim-x-

Question Number 35986 by abdo mathsup 649 cc last updated on 26/May/18 $${let}\:{f}\left({x}\right)=\:\sqrt{\mathrm{1}\:+{n}\:{x}^{\mathrm{2}} }\:\:\:−{nx}\:+\mathrm{3}\:\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow+\infty} \:{and}\:{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{equation}\:{of}\:{assymptote}\:{of}\:{f}\:{at} \\ $$$${point}\:\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right)\:.…

let-f-x-cosx-cos-2x-cos-3x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-0-pi-2-f-x-dx-

Question Number 101500 by mathmax by abdo last updated on 03/Jul/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cosx}\:.\mathrm{cos}\left(\mathrm{2x}\right).\mathrm{cos}\left(\mathrm{3x}\right) \\ $$$$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\mathrm{3}.\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$ Commented…

n-2-n-3-4-n-cos-180-n-

Question Number 167003 by cortano1 last updated on 04/Mar/22 $$\:\:\:\:\:\underset{\mathrm{n}=\mathrm{2}} {\overset{\mathrm{n}=\infty} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{n}} \mathrm{cos}\:\left(\mathrm{180}°\mathrm{n}\right)=\:? \\ $$ Answered by greogoury55 last updated on 04/Mar/22 $$\:\mathrm{cos}\:\left(\mathrm{180}°{n}\right)=\left(−\mathrm{1}\right)^{{n}} \\ $$$$\:\underset{{n}=\mathrm{2}}…

Question-35873

Question Number 35873 by Tinkutara last updated on 25/May/18 Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18 $${let}\:{sin}^{−\mathrm{1}} {x}=\theta \\ $$$${sin}\theta={x} \\ $$$${tan}\theta=\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\:\:{so}\:\theta={tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)…

find-U-n-0-1-x-2n-1-lnx-dx-with-n-integr-natural-and-n-2-find-nature-of-the-serie-U-n-

Question Number 101342 by mathmax by abdo last updated on 02/Jul/20 $$\mathrm{find}\:\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}} −\mathrm{1}}{\mathrm{lnx}}\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{2} \\ $$$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$ Answered by mathmax by abdo…

Question-35769

Question Number 35769 by Tinkutara last updated on 23/May/18 Answered by ajfour last updated on 23/May/18 $${let}\:\:{f}\left({x}\right)=\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\frac{{df}\left({x}\right)}{{dx}}=\frac{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\mathrm{4}{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\frac{\mathrm{2}\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}}…

let-f-x-arctan-1-x-and-f-n-x-e-nx-1-define-fof-n-x-and-f-n-of-x-2-study-the-nature-of-the-series-n-0-fof-n-x-and-n-0-f-n-of-x-

Question Number 35766 by abdo mathsup 649 cc last updated on 23/May/18 $${let}\:{f}\left({x}\right)={arctan}\left(\mathrm{1}+{x}\right)\:\:{and}\:\:{f}_{{n}} \left({x}\right)=\:{e}^{−{nx}} \\ $$$$\left.\mathrm{1}\right)\:{define}\:{fof}_{{n}} \left({x}\right)\:{and}\:{f}_{{n}} {of}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{nature}\:{of}\:{the}\:{series}\:\sum_{{n}=\mathrm{0}} ^{+\infty} {fof}_{{n}} \left({x}\right) \\ $$$${and}\:\sum_{{n}=\mathrm{0}}…