Question Number 35041 by math khazana by abdo last updated on 14/May/18 $${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by math khazana by abdo…
Question Number 35037 by abdo mathsup 649 cc last updated on 14/May/18 $${prove}\:{that}\:\forall\:{n}\in{N} \\ $$$$\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(−\mathrm{1}\right)^{{k}} \left(\:{C}_{\mathrm{2}{n}} ^{{k}} \right)^{\mathrm{2}} \:=\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \:\:. \\…
Question Number 34913 by abdo imad last updated on 12/May/18 $${let}\:{f}\left({x}\right)=\:\frac{\mathrm{3}}{\mathrm{2}+{cosx}}\:\:{developp}\:{f}\:{ar}\:{fourier}\:{serie}. \\ $$ Commented by abdo imad last updated on 31/May/18 $${we}\:{have}\:{cosx}\:=\:\frac{{e}^{{ix}} \:+{e}^{−{ix}} }{\mathrm{2}}\:{let}\:{use}\:{the}\:{changement} \\…
Question Number 34865 by a.i msup by abdo last updated on 12/May/18 $${let}\:{f}\left({x}\right)=\:{e}^{−\sqrt{\mathrm{1}+\mathrm{2}{x}}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 34863 by a.i msup by abdo last updated on 12/May/18 $${let}\:{f}\left({x}\right)=\:\frac{{artan}\left({x}+\mathrm{1}\right)}{\mathrm{1}+\mathrm{2}{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$ Commented by math khazana by abdo last updated…
Question Number 34849 by math khazana by abdo last updated on 11/May/18 $${let}\:{f}\left({x}\right)\:=\:\:\:\:\frac{{e}^{−{x}} }{\mathrm{2}+{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by math khazana by abdo last…
Question Number 165870 by neinhaltsieger last updated on 09/Feb/22 $$\: \\ $$$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{3}\right)\:=\:\sqrt{\boldsymbol{\mathrm{x}}\:−\:\mathrm{5}},\:\:\boldsymbol{\mathrm{f}}\left(\sqrt{\mathrm{21}}\right)\:=\:? \\ $$$$\: \\ $$ Answered by eman_64 last updated on 09/Feb/22 $$\:\:\:\:\boldsymbol{{x}}^{\mathrm{2}}…
Question Number 165848 by leonhard77 last updated on 09/Feb/22 $$\:{f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$$$\:\:{f}\left({x}\right)=? \\ $$ Answered by qaz last updated on 10/Feb/22 $$\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right) \\…
Question Number 34774 by abdo mathsup 649 cc last updated on 11/May/18 $${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{n}^{{p}} \:{sin}^{\mathrm{2}} \left({n}!\right)}{{n}^{{p}+\mathrm{1}} }\:\:{with}\mathrm{0}<{p}<\mathrm{1}\:. \\ $$ Commented by abdo mathsup 649 cc…
Question Number 34770 by abdo mathsup 649 cc last updated on 10/May/18 $${let}\:{f}\left({x}\right)=\:{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{extrsct}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{by}\:{two}\:{methods} \\ $$ Commented by…