Question Number 34736 by math khazana by abdo last updated on 10/May/18 $${letf}\left({x}\right)=−\mathrm{2}{x}\:\:+\sqrt{{x}−\mathrm{3}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)\:\:\:{and}\:\left({f}^{−\mathrm{1}} \right)^{,} \left(\mathrm{2}\right) \\ $$$$\left.\mathrm{3}\right)\:{let}\:{g}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{3}…
Question Number 34721 by abdo mathsup 649 cc last updated on 10/May/18 $${let}\:\xi\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:{with}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\:\leqslant\xi\left({x}\right)\leqslant\:\frac{{x}}{{x}−\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left({x}−\mathrm{1}\right)\xi\left({x}\right)\:. \\ $$ Terms…
Question Number 34719 by abdo mathsup 649 cc last updated on 10/May/18 $${calculate}\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:{with}\:{n}\:\in{N}. \\ $$ Commented by abdo mathsup 649 cc last updated on 12/May/18…
Question Number 100236 by mathmax by abdo last updated on 25/Jun/20 $$\mathrm{calculate}\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\frac{\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Answered by mathmax by abdo last…
Question Number 34699 by abdo imad last updated on 10/May/18 $${let}\:{f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } \:\int_{\mathrm{0}} ^{{x}} \:{e}^{{t}^{\mathrm{2}} } {dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{d}.{e}\:{verified}\:{by}\:{f} \\ $$$$\left.\mathrm{2}\right)\:{developpf}\:{at}\:{integr}\:{serie}. \\ $$ Commented by…
Question Number 100237 by mathmax by abdo last updated on 25/Jun/20 $$\mathrm{calculate}\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \\ $$ Answered by maths mind last updated…
Question Number 34697 by abdo imad last updated on 10/May/18 $${let}\:{f}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Commented by math khazana by abdo last updated on 11/May/18…
Question Number 34698 by abdo imad last updated on 10/May/18 $${let}\:{f}\left({x}\right)={e}^{{x}} \:{sinx}\:\:.{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by abdo mathsup 649 cc last updated on 10/May/18 $${f}\left({x}\right)={Im}\left(\:{e}^{{x}}…
Question Number 100235 by mathmax by abdo last updated on 25/Jun/20 $$\mathrm{calculate}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\int_{\mathrm{1}} ^{\mathrm{e}} \:\mathrm{x}^{\mathrm{n}} \:\mathrm{lnx}\:\mathrm{dx} \\ $$ Terms of Service Privacy Policy…
Question Number 34695 by math khazana by abdo last updated on 09/May/18 $${let}\:{give}\:{U}_{{n}} =\:\left\{\frac{\mathrm{1}}{{n}}\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\alpha+{k}\right)\right\}^{\frac{\mathrm{1}}{{n}}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \:?. \\ $$ Terms of Service…