Question Number 100087 by mathmax by abdo last updated on 24/Jun/20 $$\mathrm{use}\:\mathrm{beta}\:\mathrm{function}\:\mathrm{to}\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\mathrm{sin}^{\mathrm{3}} \mathrm{x}\left(\mathrm{2}+\mathrm{cosx}\right)^{\mathrm{6}} \:\mathrm{dx} \\ $$ Commented by bemath last updated on 25/Jun/20…
Question Number 34485 by candre last updated on 07/May/18 $$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}: \\ $$$$\forall{x}\geqslant\mathrm{0};{f}\left({x}+{T}_{\mathrm{1}} \right)={f}\left({x}\right) \\ $$$$\forall{x}\leqslant\mathrm{0};{f}\left({x}−{T}_{\mathrm{2}} \right)={f}\left({x}\right) \\ $$$${f}\:\mathrm{is}\:\mathrm{diferentiabre}\:\mathrm{in}\:{x}=\mathrm{0} \\ $$ Answered by MJS last updated…
Question Number 34433 by abdo mathsup 649 cc last updated on 06/May/18 $${find}\:{lim}_{{n}\rightarrow+\infty} \frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\sqrt{\frac{{n}+{k}}{{n}−{k}}} \\ $$ Commented by math khazana by abdo last…
Question Number 99920 by abdomathmax last updated on 24/Jun/20 $$\mathrm{calculate}\:\prod_{\mathrm{n}=\mathrm{2}} ^{\infty} \frac{\mathrm{n}^{\mathrm{3}} −\mathrm{1}}{\mathrm{n}^{\mathrm{3}} +\mathrm{1}} \\ $$ Answered by maths mind last updated on 24/Jun/20 $$=\underset{{n}=\mathrm{2}}…
Question Number 99919 by abdomathmax last updated on 24/Jun/20 $$\mathrm{f}_{\mathrm{n}} \mathrm{is}\:\mathrm{fibonacci}\:\mathrm{sequence} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\frac{\mathrm{f}_{\mathrm{n}+\mathrm{1}} }{{fn}} \\ $$$$\left.\mathrm{2}\right){prove}\:{th}\mathrm{a}{t}\:\Sigma\:\mathrm{f}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{convergente} \\ $$ Answered by abdomathmax last updated…
Question Number 34313 by prof Abdo imad last updated on 03/May/18 $${let}\:{u}_{\mathrm{0}} ={x}\:\neq{o}\:\:{and}\:{u}_{{n}+\mathrm{1}} ={ln}\left(\frac{{e}^{{u}_{{n}} } \:−\mathrm{1}}{{u}_{{n}} }\right) \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convervence}\:{of}\:\left({u}_{{n}} \right) \\ $$$$\left.\mathrm{2}\right){find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\prod_{{k}=\mathrm{0}} ^{{n}}…
Question Number 34311 by prof Abdo imad last updated on 03/May/18 $${let}\:{give}\:{the}\:{d}.{e}.\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{3}{xy}^{'} \:+{y}\:=\mathrm{0}{find} \\ $$$${a}\:{solution}\:{y}\left({x}\right)\:{deveppable}\:{at}\:{integr}\:{serie}\: \\ $$$${with}\mid{x}\mid<\mathrm{1}\:. \\ $$ Answered by candre last…
Question Number 34310 by prof Abdo imad last updated on 03/May/18 $${let}\:{f}\left({x}\right)=\:\int_{−\infty} ^{{x}} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{id}\:{derivsble}\:{and}\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){devellpp}\:{f}\:{at}\:{integr}\:{serie}\:{at}\:{o}. \\ $$ Terms of…
Question Number 34309 by prof Abdo imad last updated on 03/May/18 $${let}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{radius}\:{of}\:{convergence} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{the}\:{sum}\:\:{S}\left({x}\right). \\ $$ Commented by…
Question Number 99839 by mathmax by abdo last updated on 23/Jun/20 $$\mathrm{let}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1}\:\mathrm{and}\:\mathrm{x}_{\mathrm{n}+\mathrm{1}} =\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}_{\mathrm{n}} } −\mathrm{x}_{\mathrm{n}} \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{x}_{\mathrm{n}} \:\rightarrow\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\mathrm{prove}\:\mathrm{that}\:\Sigma\:\mathrm{x}_{\mathrm{n}} \:\mathrm{converges}\:\mathrm{and}\:\mathrm{ddyermine}\:\mathrm{its}\:\mathrm{sum} \\ $$…