Question Number 33981 by abdo imad last updated on 28/Apr/18 $${let}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right]\:{andf}_{{n}} \left({x}\right)={sin}\left(\mathrm{2}{narcsinx}\right) \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}_{{n}} {is}\:{odd}\:{and}\:{calculate}\:{f}_{{n}} \left(\mathrm{0}\right)\:{and}\:{f}_{{n}} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){solve}\:{inside}\:\left[\bar {\mathrm{0}1}\right]\:\:{f}_{{n}} \left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{f}_{{n}} \:{is}\:{continue},{derivable}\:{on}\left[−\mathrm{1},\mathrm{1}\right]\:{and} \\…
Question Number 33944 by rahul 19 last updated on 28/Apr/18 $$\boldsymbol{\mathrm{I}}\mathrm{f}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\left(\mathrm{p}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{p}^{\mathrm{2}} −\mathrm{9}\right){x}^{\mathrm{3}} +\left[\frac{\mathrm{p}−\mathrm{2}}{\mathrm{2}}\right]{x}^{\mathrm{2}} +\left(\mathrm{p}−\mathrm{4}\right)\left(\mathrm{p}−\mathrm{3}\right)\left(\mathrm{p}−\mathrm{2}\right){x}+\left\{\mathrm{2p}−\mathrm{1}\right\}=\mathrm{0}. \\ $$$$\mathrm{is}\:\mathrm{satisfied}\:\mathrm{by}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{in}\:\left(\mathrm{0},\mathrm{3}\right]\:{then} \\ $$$${sum}\:{of}\:{all}\:{possible}\:{integral}\:{values}\:{of} \\ $$$$'{p}'\:{is}\:? \\ $$$$\left\{.\right\}\:=\:{fractional}\:{part}\:{function}.…
Question Number 33940 by rahul 19 last updated on 28/Apr/18 $$\boldsymbol{{L}}{et}\:{a},{b}\:{are}\:{positive}\:{real}\:{numbers}\:{such} \\ $$$${that}\:{a}−{b}=\mathrm{10}\:,\:{then}\:{the}\:{smallest}\:{value} \\ $$$${of}\:{the}\:{constant}\:\boldsymbol{{k}}\:{for}\:{which}\: \\ $$$$\sqrt{\left({x}^{\mathrm{2}} +{ax}\right)}\:−\:\sqrt{\left({x}^{\mathrm{2}} +{bx}\right)}\:<\:\boldsymbol{{k}}\:{for}\:{all}\:{x}>\mathrm{0}\: \\ $$$${is}\:? \\ $$ Answered by…
Question Number 99465 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{calculate}\:\mathrm{I}\:=\int\:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{sh}\left(\mathrm{2x}\right)\mathrm{dx}\:\mathrm{and}\:\mathrm{J}\:=\int\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{ch}\left(\mathrm{2x}\right)\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated on 22/Jun/20…
Question Number 99464 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{2y}^{'} \:+\mathrm{y}\:\:=\mathrm{xe}^{−\mathrm{x}} \:\mathrm{sin}\left(\mathrm{2x}\right)\:\mathrm{withy}\left(\mathrm{o}\right)\:=−\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{0} \\ $$ Answered by MWSuSon last updated on 21/Jun/20…
Question Number 99462 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{3}} +\mathrm{2x}−\mathrm{5} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\int\:\frac{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{f}\left(\mathrm{x}\right)}\mathrm{dx} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{let}\:\mathrm{u}\left(\mathrm{x}\right)\:=^{\mathrm{3}} \sqrt{\mathrm{x}}+\mathrm{2}\:\:\mathrm{find}\:\int\:\:\frac{\mathrm{uof}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{uof}\left(\mathrm{x}\right)}\mathrm{dx} \\ $$…
Question Number 99463 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{−\mathrm{2x}} \:\mathrm{arctan}\left(\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }\right) \\ $$$$\mathrm{find}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{a}_{\mathrm{n}} \left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{n}} \:\:\:\:\mathrm{determinate}\:\mathrm{a}_{\mathrm{n}} \\…
Question Number 99460 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{determine}\:\mathrm{L}\left(\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{x}^{\mathrm{2}} }\right) \\ $$ Answered by mathmax by abdo last updated on 23/Jun/20 $$\mathrm{L}\left(\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{x}^{\mathrm{2}}…
Question Number 99459 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{x}\:\mathrm{sin}\left(\mathrm{2x}\right)\:\:\mathrm{even}\:\mathrm{2}\pi\:\mathrm{poeriodic}\:\:\mathrm{developp}\:\mathrm{h}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99458 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\mathrm{xcosx}\:\:,\mathrm{odd}\:\mathrm{and}\:\mathrm{2}\pi\:\mathrm{periodic}\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com