Question Number 99459 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{x}\:\mathrm{sin}\left(\mathrm{2x}\right)\:\:\mathrm{even}\:\mathrm{2}\pi\:\mathrm{poeriodic}\:\:\mathrm{developp}\:\mathrm{h}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99458 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\mathrm{xcosx}\:\:,\mathrm{odd}\:\mathrm{and}\:\mathrm{2}\pi\:\mathrm{periodic}\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99456 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{3}} \:\:,\mathrm{odd}\:\mathrm{and}\:\mathrm{2}\pi\:\mathrm{periodic}\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99455 by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{sin}\left(\mathrm{2x}\right)\mathrm{y}^{'} \:\:\:=\frac{\mathrm{sinx}}{\mathrm{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33890 by math khazana by abdo last updated on 26/Apr/18 $${find}\:{lim}_{{x}\rightarrow+\infty} \:\sum_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}^{\mathrm{2}} } \:\frac{{x}^{{n}} }{{n}!}\:. \\ $$ Terms of Service Privacy…
Question Number 33891 by math khazana by abdo last updated on 26/Apr/18 $${let}\:{a}\in{C}\:{and}\:\mid{a}\mid<\mathrm{1}\:{prove}\:{that}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\frac{{a}^{{n}} }{{x}+{n}}\:{is}?{developpable}\:{at}\:{point}\:\mathrm{1}\:{and} \\ $$$${the}\:{radius}\:{is}\:{r}=\mathrm{1}. \\ $$ Commented by abdo…
Question Number 33892 by math khazana by abdo last updated on 26/Apr/18 $${prove}\:{that}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{H}_{{n}} }{{n}^{\mathrm{2}} }\:=\mathrm{2}\:\xi\left(\mathrm{3}\right)\:{with} \\ $$$$\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\:\:{and}\:{x}>\mathrm{1}. \\ $$ Commented…
Question Number 33889 by math khazana by abdo last updated on 26/Apr/18 $${prove}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{C}_{\mathrm{2}{n}} ^{{n}} }{\mathrm{4}^{{n}} \left(\mathrm{4}{n}+\mathrm{1}\right)}\:. \\ $$ Terms of…
Question Number 33887 by math khazana by abdo last updated on 26/Apr/18 $${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33886 by math khazana by abdo last updated on 26/Apr/18 $${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}. \\ $$ Commented by math khazana by abdo last…