Question Number 33848 by prof Abdo imad last updated on 26/Apr/18 $${let}\:{w}_{{n}} =\:\frac{{H}_{{n}} ^{\mathrm{2}} }{{n}}\:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{w}_{{n}} {x}^{{n}} \:\:. \\…
Question Number 33846 by prof Abdo imad last updated on 26/Apr/18 $${find}\:{radous}\:{of}\:{conbergence}\:{for}\:{theserie}\:\sum_{{n}\geqslant\mathrm{0}} {x}^{{n}!} .\: \\ $$ Commented by prof Abdo imad last updated on 31/May/18…
Question Number 33847 by prof Abdo imad last updated on 26/Apr/18 $$\:{let}\:{give}\:{a}\:{sequence}\:{of}\:{real}\:{numbets}\:{positif} \\ $$$$\left({a}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} \right)^{\mathrm{2}} \leqslant\:{n}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} ^{\mathrm{2}} \\…
Question Number 33844 by prof Abdo imad last updated on 26/Apr/18 $${developp}\:{f}\left({x}\right)={e}^{−{cosx}} \:{at}\:{integr}\:{serie}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33818 by rahul 19 last updated on 25/Apr/18 $$\boldsymbol{{L}}{et}\:{f}:\boldsymbol{{R}}\:\rightarrow\:\left[\:\mathrm{1},\:\infty\right)\:{be}\:{defined}\:{as}\: \\ $$$${f}\left({x}\right)\:=\:\mathrm{log}_{\mathrm{10}} \:\left(\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\boldsymbol{{k}}+\mathrm{1}}\:+\mathrm{10}\:\right). \\ $$$$\boldsymbol{{I}}{f}\:{f}\left({x}\right)\:{is}\:\boldsymbol{{surjective}}\:,\:{then}\:{find} \\ $$$${the}\:{value}\:{of}\:\boldsymbol{{k}}\:? \\ $$ Answered by MJS last…
Question Number 33815 by rahul 19 last updated on 25/Apr/18 $$\boldsymbol{{L}}{et}\:{f}:{D}\:\rightarrow\:\boldsymbol{{R}}\:{be}\:{defined}\:{as}\: \\ $$$${f}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+{a}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{3}{a}}\:{where}\:{D}\:{and}\:{R} \\ $$$${denote}\:{the}\:{domain}\:{of}\:\boldsymbol{{f}}\:{and}\:{the}\:{set} \\ $$$${of}\:{all}\:{real}\:{numbers}\:{respectively}. \\ $$$${If}\:{f}\:{is}\:''\:{surjective}\:''\:\:{mapping}\:{then} \\ $$$${the}\:{range}\:{of}\:\boldsymbol{{a}}\:{is}\:? \\ $$$$\left.{a}\right)\:\mathrm{0}\leqslant{a}\leqslant\mathrm{1}…
Question Number 164874 by cortano1 last updated on 22/Jan/22 Answered by mahdipoor last updated on 22/Jan/22 $${get}\:{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}={t}\:\Rightarrow\:{x}^{\mathrm{2}} +\mathrm{1}={t}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{xt} \\ $$$$\Rightarrow\:\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}={x} \\…
Question Number 33733 by rahul 19 last updated on 22/Apr/18 $${Solve}\:: \\ $$$$\left({x}−\mathrm{2}\right)\:×\:\left[{x}\right]\:=\:\left\{{x}\right\}\:−\mathrm{1}\:. \\ $$$$\bullet\:\left[.\right]=\:{greatest}\:{integer}\:{function} \\ $$$$\bullet\:\left\{.\right\}=\:{fractional}\:{part}\:\:{function}. \\ $$ Commented by MJS last updated on…
Question Number 33719 by prof Abdo imad last updated on 22/Apr/18 $${simplify}\:{S}_{{n}} \left({x}\right)\:=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)….\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \left({x}\right)\:{if}\:\mid{x}\mid<\mathrm{1}\:. \\ $$ Commented by…
Question Number 33717 by prof Abdo imad last updated on 22/Apr/18 $${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{artan}\left(\:\frac{\sqrt{{n}+\mathrm{1}}\:−\sqrt{{n}}}{\mathrm{1}+\sqrt{{n}^{\mathrm{2}} +{n}}}\:\right) \\ $$ Commented by prof Abdo imad last updated on…