Question Number 33718 by prof Abdo imad last updated on 22/Apr/18 $${find}\:\:\sum_{{n}=\mathrm{1}} ^{+\infty} {arctan}\left(\:\frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\:−{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)}{\mathrm{1}+\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\left.{n}+\mathrm{1}\right)}\right.}\right) \\ $$ Commented by prof Abdo imad last updated on 26/Apr/18…
Question Number 33716 by prof Abdo imad last updated on 22/Apr/18 $${calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:{arctan}\left(\:\frac{{e}^{{n}+\mathrm{1}} \:\:−{e}^{{n}} }{\mathrm{1}+{e}^{\mathrm{2}{n}+\mathrm{1}} }\right)\:. \\ $$ Commented by prof Abdo imad last…
Question Number 33713 by abdo imad last updated on 22/Apr/18 $${find}\:{tbe}\:{value}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{n}^{\mathrm{2}} −{n}+\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$ Commented by prof Abdo imad last updated…
Question Number 33710 by math khazana by abdo last updated on 22/Apr/18 $$\left.\mathrm{1}\right)\:{find}\:{the}\:{radius}\:{of}\:{convergence}?{for} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{x}^{{n}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:{and}\:{calculate}\:{its}\:{sum} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\:\mathrm{2}^{{n}}…
Question Number 33708 by math khazana by abdo last updated on 22/Apr/18 $${find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{\mathrm{3}{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{8}^{{n}} }\:. \\ $$ Terms of Service…
Question Number 33709 by math khazana by abdo last updated on 22/Apr/18 $${find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{\mathrm{3}{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{8}^{{n}} }\:. \\ $$ Commented by prof…
Question Number 33707 by math khazana by abdo last updated on 22/Apr/18 $${find}\:{the}\:{radius}\:{of}\:{convergence}\:{for} \\ $$$$\sum_{{n}\geqslant\mathrm{2}} \left(\:\int_{{n}−\frac{\mathrm{1}}{\mathrm{2}}} ^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{3}} +{x}\:+\mathrm{1}}}\right){x}^{{n}} \:\:. \\ $$ Terms of Service…
Question Number 99242 by abdomathmax last updated on 19/Jun/20 $$\mathrm{calculate}\:\mathrm{L}\left(\mathrm{e}^{−\mathrm{ax}} \:\mathrm{ch}\left(\mathrm{3x}\right)\right)\:\:\mathrm{with}\:\mathrm{a}>\mathrm{0} \\ $$ Commented by PRITHWISH SEN 2 last updated on 20/Jun/20 $$\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{s}+\mathrm{a}\right)\mathrm{x}}…
Question Number 99240 by abdomathmax last updated on 19/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{1}+\mathrm{cosx}}\:\:\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by mathmax by abdo last updated on 20/Jun/20 $$\mathrm{f}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{1}+\mathrm{cosx}}\:\:\:\mathrm{f}\:\mathrm{is}\:\mathrm{even}\:\mathrm{2}\pi\:\mathrm{periodic}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{a}_{\mathrm{n}}…
Question Number 99241 by abdomathmax last updated on 19/Jun/20 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}−\mathrm{cosx}}\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com