Menu Close

Category: Relation and Functions

let-f-n-x-with-f-n-x-sin-nx-n-2-n-1-and-S-its-sum-x-pi-pi-prove-that-x-y-pi-pi-2-x-y-S-x-S-y-lt-x-y-

Question Number 33701 by math khazana by abdo last updated on 22/Apr/18 $${let}\:\Sigma\:{f}_{{n}} \left({x}\right)\:{with}\:{f}_{{n}} \left({x}\right)\:=\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:\:{and}\:{S}\:{its}\:{sum} \\ $$$${x}\in\left[−\pi,\pi\right]\:{prove}\:{that}\:\forall\left({x},{y}\right)\in\left[−\pi,\pi\right]^{\mathrm{2}} \\ $$$${x}\neq{y}\:\Rightarrow\mid{S}\left({x}\right)−{S}\left({y}\right)\mid<\mid{x}−{y}\mid\:. \\ $$ Terms of Service…

let-f-n-x-n-x-e-nx-with-x-gt-0-1-study-the-simple-and-uniform-convervence-for-f-n-x-2-let-S-x-n-1-f-n-x-prove-that-S-x-1-x-x-0-

Question Number 33698 by math khazana by abdo last updated on 22/Apr/18 $${let}\:\:{f}_{{n}} \left({x}\right)=\:{n}^{{x}} \:{e}^{−{nx}} \:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{simple}\:{and}\:{uniform}\:{convervence}\:{for} \\ $$$$\Sigma\:\:{f}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{f}_{{n}}…

let-S-x-n-0-f-n-x-with-f-n-x-1-n-n-x-n-x-0-1-prove-that-S-id-defined-calculate-S-1-and-prove-that-x-gt-0-xS-x-S-x-1-1-e-2-prove-that-S-is-C-on-R-3

Question Number 33699 by math khazana by abdo last updated on 22/Apr/18 $${let}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{f}_{{n}} \left({x}\right)\:\:{with}\:{f}_{{n}} \left({x}\right)=\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}\right)} \\ $$$$\left.{x}\in\right]\mathrm{0},+\infty\left[\right. \\ $$$$\left.\mathrm{1}\right)\:\:{prove}\:{that}\:{S}\:{id}\:{defined}\:.{calculate}\:{S}\left(\mathrm{1}\right)\:{and} \\ $$$${prove}\:{that}\:\forall{x}>\mathrm{0}\:\:{xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)\:=\frac{\mathrm{1}}{{e}} \\…

f-3x-1-g-6x-1-3x-f-x-1-x-g-2x-3-2x-2-x-f-x-

Question Number 164770 by cortano1 last updated on 21/Jan/22 $$\begin{cases}{{f}\left(\mathrm{3}{x}−\mathrm{1}\right)+{g}\left(\mathrm{6}{x}−\mathrm{1}\right)=\mathrm{3}{x}}\\{{f}\left({x}+\mathrm{1}\right)+{x}\:{g}\left(\mathrm{2}{x}+\mathrm{3}\right)=\mathrm{2}{x}^{\mathrm{2}} +{x}}\end{cases} \\ $$$$\:{f}\left({x}\right)=? \\ $$ Answered by blackmamba last updated on 21/Jan/22 $$\:\mathrm{let}\:\begin{cases}{{f}\left({x}\right)={px}+{q}}\\{{g}\left({x}\right)={ax}+{b}}\end{cases} \\ $$$$\:\begin{cases}{{f}\left(\mathrm{3}{x}−\mathrm{1}\right)=\mathrm{3}{px}+{q}−{p}}\\{{g}\left(\mathrm{6}{x}−\mathrm{1}\right)=\mathrm{6}{ax}+{b}−{a}}\end{cases}\:\Rightarrow\left(\mathrm{3}{p}+\mathrm{6}{a}\right){x}+{b}+{q}−\left({a}+{p}\right)=\mathrm{3}{x}…

Let-function-f-x-be-defined-as-f-x-x-2-bx-c-where-b-c-R-And-f-1-2f-5-f-9-32-Find-no-of-ordered-pairs-b-c-such-that-f-x-8-x-1-9-

Question Number 33651 by rahul 19 last updated on 21/Apr/18 $${Let}\:{function}\:{f}\left({x}\right)\:{be}\:{defined}\:{as}\: \\ $$$${f}\left({x}\right)=\:{x}^{\mathrm{2}} +{bx}+{c}\:,\:{where}\:{b},{c}\in{R}\:. \\ $$$${And}\:{f}\left(\mathrm{1}\right)\:−\:\mathrm{2}{f}\left(\mathrm{5}\right)\:+{f}\left(\mathrm{9}\right)\:=\mathrm{32}. \\ $$$${Find}\:{no}.\:{of}\:{ordered}\:{pairs}\:\left({b},{c}\right) \\ $$$${such}\:{that}\:\mid{f}\left({x}\right)\mid\leqslant\mathrm{8}\:\forall\:{x}\in\:\left[\mathrm{1},\mathrm{9}\right]\:? \\ $$ Answered by MJS…