Menu Close

Category: Relation and Functions

Consider-f-R-R-such-that-f-3-1-for-a-R-and-f-x-f-y-f-3-x-f-3-y-2f-xy-x-y-R-Then-find-f-x-

Question Number 33649 by rahul 19 last updated on 21/Apr/18 $${Consider}\:{f}:{R}^{+} \rightarrow{R}\:{such}\:{that} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{1}\:{for}\:{a}\in{R}^{+} \:{and}\: \\ $$$${f}\left({x}\right).{f}\left({y}\right)\:+\:{f}\left(\frac{\mathrm{3}}{{x}}\right).{f}\left(\frac{\mathrm{3}}{{y}}\right)\:=\:\mathrm{2}{f}\left({xy}\right) \\ $$$$\forall\:{x},{y}\:\in\:{R}^{+} .\:{Then}\:{find}\:{f}\left({x}\right)\:? \\ $$ Commented by rahul…

Question-99159

Question Number 99159 by bemath last updated on 19/Jun/20 Commented by som(math1967) last updated on 19/Jun/20 $$\mathrm{let}\:\mathrm{pt}.\:\mathrm{on}\:\mathrm{paabola}\:\left(\mathrm{h},\mathrm{k}\right) \\ $$$$\therefore\sqrt{\left(\mathrm{h}+\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{k}−\mathrm{3}\right)^{\mathrm{2}} }=\frac{\mid\mathrm{k}−\mathrm{7}\mid}{\:\sqrt{\mathrm{1}^{\mathrm{2}} }} \\ $$$$\Rightarrow\left(\mathrm{h}+\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{k}−\mathrm{3}\right)^{\mathrm{2}}…

1-prove-that-a-b-R-2-sinb-sina-b-a-2-let-give-the-sequence-x-0-0-and-x-n-1-a-1-2-sin-x-n-prove-that-for-m-n-x-m-x-n-a-2-n-1-3-prove-that-x-n-is-convergent-an

Question Number 33596 by abdo imad last updated on 19/Apr/18 $$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\left({a},{b}\right)\in{R}^{\mathrm{2}} \:\:\:\:\mid{sinb}\:−{sina}\mid\leqslant\mid{b}−{a}\mid \\ $$$$\left.\mathrm{2}\right){let}\:{give}\:{the}\:{sequence}\:\:{x}_{\mathrm{0}} =\mathrm{0}\:{and} \\ $$$${x}_{{n}+\mathrm{1}} ={a}\:+\frac{\mathrm{1}}{\mathrm{2}}{sin}\left({x}_{{n}} \right)\:{prove}\:{that}\:{for}\:{m}\geqslant{n} \\ $$$$\mid{x}_{{m}} \:−{x}_{{n}} \mid\:\leqslant\:\:\frac{\mid{a}\mid}{\mathrm{2}^{{n}−\mathrm{1}} } \\…

let-f-x-e-x-2-1-prove-that-f-n-x-p-n-x-e-x-2-where-p-n-is-a-polynome-with-deg-n-2-prove-that-n-1-p-n-1-x-x-p-n-x-n-p-n-1-x-0-find-and-3-calculate-p-0

Question Number 33592 by abdo imad last updated on 19/Apr/18 $${let}\:{f}\left({x}\right)\:={e}^{−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}^{\left({n}\right)} \left({x}\right)\:=\:{p}_{{n}} \left({x}\right).{e}^{−{x}^{\mathrm{2}} } \:\:\:{where}\:{p}_{{n}} {is}\:{a}\:{polynome} \\ $$$${with}\:{deg}={n} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall\:{n}\geqslant\mathrm{1}\: \\ $$$${p}_{{n}+\mathrm{1}}…