Menu Close

Category: Relation and Functions

solve-y-5y-3y-x-2-sin-3x-with-y-0-0-and-y-0-1-

Question Number 99113 by mathmax by abdo last updated on 18/Jun/20 $$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{5y}^{'} \:−\mathrm{3y}\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{3x}\right)\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)\:=\mathrm{0}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)=−\mathrm{1} \\ $$ Answered by mathmax by abdo last updated…

f-x-x-20-a-1-x-19-a-2-x-18-a-20-If-f-1-f-2-f-3-f-20-What-is-the-value-of-a-1-

Question Number 33571 by Joel578 last updated on 19/Apr/18 $${f}\left({x}\right)\:=\:{x}^{\mathrm{20}} \:+\:{a}_{\mathrm{1}} {x}^{\mathrm{19}} \:+\:{a}_{\mathrm{2}} {x}^{\mathrm{18}} \:+\:…\:+\:{a}_{\mathrm{20}} \\ $$$$\mathrm{If}\:{f}\left(\mathrm{1}\right)\:=\:{f}\left(\mathrm{2}\right)\:=\:{f}\left(\mathrm{3}\right)\:=\:…\:=\:{f}\left(\mathrm{20}\right) \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}_{\mathrm{1}} \:? \\ $$ Answered by MJS…

let-f-x-1-1-x-2-3-developp-f-at-integr-serie-

Question Number 98943 by mathmax by abdo last updated on 17/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$ Answered by maths mind last updated on 17/Jun/20 $${f}\left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}}…

If-f-R-R-is-an-odd-function-such-that-a-f-1-x-1-f-x-b-x-2-f-1-x-f-x-x-0-Then-find-f-x-

Question Number 33375 by rahul 19 last updated on 15/Apr/18 $${If}\:{f}:{R}\:\rightarrow\:{R}\:{is}\:{an}\:\boldsymbol{{odd}}\:{function}\:{such} \\ $$$${that}\:: \\ $$$$\left.{a}\right)\:{f}\left(\mathrm{1}+{x}\right)\:=\:\mathrm{1}+{f}\left({x}\right)\:. \\ $$$$\left.{b}\right)\:{x}^{\mathrm{2}} \:{f}\left(\frac{\mathrm{1}}{{x}}\right)\:=\:{f}\left({x}\right)\:,\:{x}\neq\mathrm{0}. \\ $$$${Then}\:{find}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:? \\ $$ Commented by prof…

let-consider-the-serie-n-1-sin-1-n-x-n-1-find-the-radius-of-convergence-2-study-the-convergence-at-R-and-R-3-let-S-x-its-sum-study-the-continuity-of-S-4-prove-that-1-x-x-1-S-x-0-

Question Number 33359 by caravan msup abdo. last updated on 15/Apr/18 $${let}\:{consider}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} {sin}\left(\frac{\mathrm{1}}{\:\sqrt{{n}}}\right){x}^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{radius}\:{of}\:{convergence} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{convergence}\:{at}\:−{R}\:{and}\:{R} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{S}\left({x}\right){its}\:{sum}\:{study}\:{the}\:{continuity} \\ $$$${of}\:{S} \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\left(\mathrm{1}−{x}\right)_{{x}\rightarrow\mathrm{1}^{−} } {S}\left({x}\right)\rightarrow\mathrm{0}…