Menu Close

Category: Relation and Functions

let-S-n-k-1-1-k-1-k-and-T-n-k-1-1-k-1-2k-1-1-calculate-lim-S-n-and-lim-T-n-n-2-prove-that-S-n-ln2-and-T-n-pi-4-converges-and-find-its-sum-

Question Number 33348 by caravan msup abdo. last updated on 14/Apr/18 $${let}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:{and} \\ $$$$\underset{{n}} {{T}}\:=\:\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{\mathrm{2}{k}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}\:{S}_{{n}} \:\:{and}\:{lim}\:{T}_{{n}}…

let-f-n-x-nx-2-e-x-n-x-0-1-study-the-simple-convergence-of-f-n-x-2-study-the-uniform-convergence-of-f-n-x-

Question Number 33347 by caravan msup abdo. last updated on 14/Apr/18 $${let}\:{f}_{{n}} \left({x}\right)=\:{nx}^{\mathrm{2}} \:{e}^{−{x}\sqrt{{n}}} \:\:\:,\:{x}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{simple}\:{convergence}\:{of} \\ $$$$\Sigma\:{f}_{{n}} \left({x}\left\{\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{uniform}\:{convergence}\:{of} \\ $$$$\Sigma\:{f}_{{n}} \left({x}\right).…

1-give-D-n-1-o-for-f-x-1-x-2-2-drcompose-inside-R-x-the-fraction-F-x-1-x-n-x-2-

Question Number 33335 by prof Abdo imad last updated on 14/Apr/18 $$\left.\mathrm{1}\right)\:{give}\:?{D}_{{n}−\mathrm{1}} \left({o}\right)\:\:{for}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}+\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{drcompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{{n}} \left({x}+\mathrm{2}\right)} \\ $$ Commented by prof Abdo imad…

If-f-2x-2y-f-2x-2y-sin-x-y-sin-x-y-Then-find-f-x-

Question Number 33316 by rahul 19 last updated on 14/Apr/18 $${If}\:\:\frac{{f}\left(\mathrm{2}{x}+\mathrm{2}{y}\right)}{{f}\left(\mathrm{2}{x}−\mathrm{2}{y}\right)}\:=\:\frac{\mathrm{sin}\:\left({x}+{y}\right)}{\mathrm{sin}\:\left({x}−{y}\right)}\:. \\ $$$${Then}\:{find}\:{f}\left({x}\right)\:? \\ $$ Answered by MJS last updated on 14/Apr/18 $$\mathrm{2}{x}\pm\mathrm{2}{y}=\mathrm{2}\left({x}\pm{y}\right)=\mathrm{2}{p} \\ $$$${f}\left(\mathrm{2}{p}\right)=\mathrm{sin}\:{p}\:=\:\mathrm{sin}\:\left({x}\pm{y}\right)…