Question Number 33285 by abdo imad last updated on 14/Apr/18 $${study}\:{the}\:{sequence}\:\:{u}_{{n}+\mathrm{1}} \:\:=\sqrt{{u}_{{n}} \:\:\:+\frac{\mathrm{1}}{{n}+\mathrm{1}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33284 by abdo imad last updated on 14/Apr/18 $${study}\:{the}\:{sequence}\:\:{u}_{{n}+\mathrm{1}} \:\:=\:\frac{{u}_{{n}} \:−{ln}\left(\mathrm{1}+{u}_{{n}} \right)}{{u}_{{n}} ^{\mathrm{2}} } \\ $$$${with}\:{u}_{\mathrm{0}} >\mathrm{0}\:. \\ $$ Terms of Service Privacy…
Question Number 98816 by M±th+et+s last updated on 16/Jun/20 $${prove}\:{that} \\ $$$$ \\ $$$$\left({V}^{\:\mu} \right)_{;\mu} =\frac{\left(\sqrt{−{g}}{V}^{\:\mu} \right)_{;\mu} }{\:\sqrt{−{g}}} \\ $$ Terms of Service Privacy Policy…
Question Number 33282 by abdo imad last updated on 14/Apr/18 $${study}\:{the}\:{sequence}\:{u}_{\mathrm{0}} ={a}>\mathrm{1}\:{and} \\ $$$${u}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{n}} \:+\frac{{a}}{{u}_{{n}} }\right)\:. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 33256 by prof Abdo imad last updated on 14/Apr/18 $${let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie}. \\ $$$$ \\ $$…
Question Number 33174 by prof Abdo imad last updated on 11/Apr/18 $${let}\:\left({a},{b}\right)\in{N}^{\mathrm{2}} \:{and}\:{p}_{{n}} \left({x}\right)=\:\frac{{x}^{{n}} }{{n}!}\left({bx}−{a}\right)^{{n}} \\ $$$${give}\:{the}\:{taylor}\:{formula}\:{for}\:{p}_{{n}\:} \:{at}\:{x}=\mathrm{0}\:. \\ $$ Terms of Service Privacy Policy…
Question Number 33173 by prof Abdo imad last updated on 11/Apr/18 $${let}\:\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} }\:{developp}\:{f}\:\:{at}\:{integr}\:{serie}. \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33171 by prof Abdo imad last updated on 11/Apr/18 $${let}\:{f}\left({x}\right)=\:\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{{t}} }\:\:.{calculate}\:{f}^{'} \left({x}\right)\:{interms}\:{of}\:{cht} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33167 by abdo imad last updated on 11/Apr/18 $${f}\:{is}\:{a}\:{continue}\:{and}\:{positive}\:{function}\:{on}\:\left[{a},{b}\right]\:{with}\:{a}<{b} \\ $$$${let}\:{m}\:={max}_{{x}\in\left[{a},{b}\right]} \:{f}\left({x}\right)\:{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}^{{n}} \left({x}\right){dx}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$ Commented by abdo…
Question Number 33131 by prof Abdo imad last updated on 11/Apr/18 $$\left.\mathrm{1}\right){find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{{inx}} }{{n}\left({n}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{sin}\left({nx}\right)}{{n}\left({n}+\mathrm{1}\right)} \\ $$$${and}\:\sum_{{n}\geqslant\mathrm{1}} \:\:\frac{{cos}\left({nx}\right)}{{n}\left({n}+\mathrm{1}\right)}\:. \\ $$ Commented by…