Menu Close

Category: Relation and Functions

f-is-a-continue-and-positive-function-on-a-b-with-a-lt-b-let-m-max-x-a-b-f-x-prove-that-lim-n-1-b-a-a-b-f-n-x-dx-1-n-

Question Number 33167 by abdo imad last updated on 11/Apr/18 $${f}\:{is}\:{a}\:{continue}\:{and}\:{positive}\:{function}\:{on}\:\left[{a},{b}\right]\:{with}\:{a}<{b} \\ $$$${let}\:{m}\:={max}_{{x}\in\left[{a},{b}\right]} \:{f}\left({x}\right)\:{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}^{{n}} \left({x}\right){dx}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$ Commented by abdo…

1-find-n-1-e-inx-n-n-1-2-find-the-value-of-n-1-sin-nx-n-n-1-and-n-1-cos-nx-n-n-1-

Question Number 33131 by prof Abdo imad last updated on 11/Apr/18 $$\left.\mathrm{1}\right){find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{{inx}} }{{n}\left({n}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{sin}\left({nx}\right)}{{n}\left({n}+\mathrm{1}\right)} \\ $$$${and}\:\sum_{{n}\geqslant\mathrm{1}} \:\:\frac{{cos}\left({nx}\right)}{{n}\left({n}+\mathrm{1}\right)}\:. \\ $$ Commented by…

let-give-f-x-1-2x-2-3x-1-1-find-f-n-x-2-find-f-n-0-3-if-f-x-a-n-x-n-calculate-the-sequence-a-n-

Question Number 33126 by prof Abdo imad last updated on 10/Apr/18 $${let}\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{3}{x}+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{if}\:\:\:\:{f}\left({x}\right)=\Sigma\:{a}_{{n}} \:{x}^{{n}} \:\:{calculate}\:{the}\:{sequence}\:{a}_{{n}} \\ $$…

Question-164176

Question Number 164176 by mathlove last updated on 15/Jan/22 Answered by mr W last updated on 15/Jan/22 $${f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)={x}\:\:\:\:…\left({i}\right) \\ $$$${replace}\:{x}\:{with}\:\mathrm{1}−\frac{\mathrm{1}}{{x}} \\ $$$$\Rightarrow{f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{1}−\frac{\mathrm{1}}{{x}}\:\:\:…\left({ii}\right) \\ $$$${replace}\:{x}\:{with}\:\frac{\mathrm{1}}{\mathrm{1}−{x}} \\…