Menu Close

Category: Relation and Functions

let-give-x-lt-1-prove-that-n-1-cos-n-n-x-n-1-2-ln-1-2xcos-x-2-

Question Number 32936 by abdo imad last updated on 06/Apr/18 $${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{prove}\:{that} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({n}\theta\right)}{{n}}\:{x}^{{n}} \:=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}−\mathrm{2}{xcos}\theta+{x}^{\mathrm{2}} \right)\:. \\ $$ Terms of Service Privacy Policy Contact:…

u-n-is-a-convergent-serie-with-positif-terms-find-the-nature-of-n-1-u-n-n-and-n-o-u-n-1-u-n-

Question Number 32933 by abdo imad last updated on 06/Apr/18 $$\Sigma\:{u}_{{n}} \:{is}\:{a}\:{convergent}\:{serie}\:{with}\:{positif}\:{terms} \\ $$$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\sqrt{{u}_{{n}} }}{{n}}\:\:{and}\:\:\:\sum_{{n}\geqslant{o}} \:\:\frac{{u}_{{n}} }{\mathrm{1}+{u}_{{n}} }\:\:. \\ $$ Terms of Service Privacy…

let-g-x-2-cos-pix-developp-g-at-fourier-serie-

Question Number 98430 by mathmax by abdo last updated on 13/Jun/20 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\frac{\mathrm{2}}{\mathrm{cos}\left(\pi\mathrm{x}\right)}\:\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by abdomathmax last updated on 13/Jun/20 $$\mathrm{we}\:\mathrm{have}\:\mathrm{g}\left(\mathrm{x}\right)\:=\frac{\mathrm{2}}{\mathrm{cos}\left(\pi\mathrm{x}\right)}\:=\frac{\mathrm{4}}{\mathrm{e}^{\mathrm{i}\pi\mathrm{x}\:} \:+\mathrm{e}^{−\mathrm{i}\pi\mathrm{x}} } \\…

let-f-x-cos-x-developp-f-at-fourier-serie-

Question Number 98429 by mathmax by abdo last updated on 13/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{cos}\left(\alpha\mathrm{x}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by abdomathmax last updated on 15/Jun/20 $$\mathrm{f}\:\mathrm{is}\:\mathrm{even}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{a}_{\mathrm{n}}…

calculste-A-n-1-2-1-2-x-n-1-x-1-x-dx-find-nature-of-the-serie-A-n-

Question Number 98424 by mathmax by abdo last updated on 13/Jun/20 $$\mathrm{calculste}\:\mathrm{A}_{\mathrm{n}} =\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}}\mathrm{dx} \\ $$$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{A}_{\mathrm{n}} \\ $$ Answered by maths mind last…