Menu Close

Category: Trigonometry

Question-157315

Question Number 157315 by amin96 last updated on 22/Oct/21 Answered by gsk2684 last updated on 22/Oct/21 $$\underset{{t}=\mathrm{5555}} {\overset{\mathrm{55555}} {\prod}}\left(−\mathrm{1}\right)^{{t}} \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{5555}} \left(−\mathrm{1}\right)^{\mathrm{5556}} …\left(−\mathrm{1}\right)^{\mathrm{55555}} \\ $$$$=\left(−\mathrm{1}\right)\left(\mathrm{1}\right)\left(−\mathrm{1}\right)….\left(−\mathrm{1}\right)\:\left({odd}\:{number}\:{of}\:{terms}\right)…

x-3sin-x-2-x-sin-3-x-

Question Number 157227 by amin96 last updated on 21/Oct/21 $$\boldsymbol{\mathrm{x}}\left(\mathrm{3}\boldsymbol{\mathrm{sin}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)−\mathrm{2}\sqrt{\boldsymbol{\mathrm{x}}}\right)=\boldsymbol{\mathrm{sin}}^{\mathrm{3}} \left(\sqrt{\boldsymbol{\mathrm{x}}}\right) \\ $$ Answered by Javokhir last updated on 21/Oct/21 $$ \\ $$$$\:\:\:\:\:\:\:\sqrt{{x}}={t} \\ $$$$\:\:\:\:\:\:\:{t}^{\mathrm{2}}…

Prove-that-b-2asin-2-when-acos-bsin-c-and-45-

Question Number 26135 by JI Siam last updated on 21/Dec/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{b}=\mathrm{2asin}^{\mathrm{2}} \theta\:; \\ $$$$\mathrm{when}\:\mathrm{acos}\theta−\mathrm{bsin}\theta=\mathrm{c}\:\mathrm{and}\:\theta=\mathrm{45}° \\ $$ Commented by mrW1 last updated on 21/Dec/17 $${It}\:{is}\:{not}\:{true}\:{that}\:{b}=\mathrm{2}{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:{if}\:{c}\neq\mathrm{0}.…

Question-26050

Question Number 26050 by Tinkutara last updated on 18/Dec/17 Answered by ajfour last updated on 20/Dec/17 $$\left[\mathrm{1},\infty\right) \\ $$$$\:\:{mere}\:\:{attempt}\:…… \\ $$$${b}+{c}\:\geqslant\:{a} \\ $$$${a}+{b}+{c}\:\geqslant\:\mathrm{2}{a} \\ $$$$\Rightarrow\:\frac{{s}}{{a}}\:\geqslant\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:…….\left({i}\right)…

Question-26007

Question Number 26007 by Tinkutara last updated on 17/Dec/17 Answered by ajfour last updated on 17/Dec/17 $${r}_{\mathrm{1}} \left(\mathrm{tan}\:\frac{{B}}{\mathrm{2}}+\mathrm{tan}\:\frac{{C}}{\mathrm{2}}\right)={a} \\ $$$${r}\left(\mathrm{cot}\:\frac{{B}}{\mathrm{2}}+\mathrm{cot}\:\frac{{C}}{\mathrm{2}}\right)={a} \\ $$$$\Rightarrow\:\frac{{r}_{\mathrm{1}} }{{r}}=\frac{\mathrm{cot}\:\frac{{B}}{\mathrm{2}}+\mathrm{cot}\:\frac{{C}}{\mathrm{2}}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}+\mathrm{tan}\:\frac{{C}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}\mathrm{tan}\:\frac{{C}}{\mathrm{2}}}…

prove-that-cos-36-1-5-4-

Question Number 157065 by apriadodir last updated on 19/Oct/21 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{cos}\:\mathrm{36}°=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$ Commented by cortano last updated on 19/Oct/21 $$\:\mathrm{cos}\:\mathrm{36}°=\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{18}° \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}−\mathrm{2}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}−\left(\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{8}}\right)…

Question-25842

Question Number 25842 by Tinkutara last updated on 15/Dec/17 Commented by ajfour last updated on 15/Dec/17 $$\mathrm{2sin}\:\left(\frac{{A}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{{B}}{\mathrm{2}}\right)=\mathrm{2}\left(\frac{\mathrm{sin}\:{A}+\mathrm{sin}\:{B}}{\mathrm{sin}\:{C}}\right)−\mathrm{2} \\ $$$$\Rightarrow\:\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)−\mathrm{cos}\:\left(\frac{{A}+{B}}{\mathrm{2}}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{4sin}\:\left(\frac{{A}+{B}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)}{\mathrm{2sin}\:\left(\frac{{C}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{C}}{\mathrm{2}}\right)}−\mathrm{2} \\ $$$$\Rightarrow\:{as}\:\:\:\:\mathrm{cos}\:\left(\frac{{C}}{\mathrm{2}}\right)=\mathrm{sin}\:\left(\frac{{A}+{B}}{\mathrm{2}}\right)\:,\:{so} \\ $$$$\left[\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)−\mathrm{cos}\:\left(\frac{{A}+{B}}{\mathrm{2}}\right)\right]\mathrm{sin}\:\frac{{C}}{\mathrm{2}}…