Menu Close

Category: Trigonometry

Question-27640

Question Number 27640 by Tinkutara last updated on 11/Jan/18 Answered by ajfour last updated on 11/Jan/18 cosC=35=a2+b2c22ab$$\Rightarrow\:\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\left({n}+\mathrm{2}\right)^{\mathrm{2}} −{n}^{\mathrm{2}} }{\mathrm{2}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}=\frac{\mathrm{3}}{\mathrm{5}}…

Question-27605

Question Number 27605 by ajfour last updated on 10/Jan/18 Answered by mrW2 last updated on 13/Jan/18 DBDC=ABAC=cbDB=acb+cDC=abb+cAD=2s(sa)bcb+c$$\frac{{AE}}{{AB}}=\frac{{AD}}{{DB}}=\frac{\mathrm{2}\sqrt{{s}\left({s}−{a}\right){bc}}}{{b}+{c}}×\frac{{b}+{c}}{{ac}}=\frac{\mathrm{2}\sqrt{{s}\left({s}−{a}\right){bc}}}{{ac}}…

sin-pi-4-x-sin-pi-4-x-2cos-2x-1-4-

Question Number 158354 by cortano last updated on 03/Nov/21 sin(π4+x)+sin(π4x)=2cos2x4 Commented by tounghoungko last updated on 03/Nov/21 sin(π4+x)+sin(π4x)+2sin(π4+x)sin(π4x)=2cos2x(i)sin(π4+x)+sin(π4x)=2sinπ4cosx=2cosx$$\left({ii}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+{x}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−{x}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{2}}−\mathrm{cos}\:\mathrm{2}{x}\right)=\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}} \