Menu Close

Category: Trigonometry

Assuming-that-the-moon-s-diameter-subtends-and-angle-1-2-at-the-eye-of-an-observer-find-how-far-from-the-eye-of-a-coin-of-10-cm-diameter-must-be-held-so-as-just-to-hide-moon-

Question Number 24948 by adityapratap2585@gmail.com last updated on 29/Nov/17 Assumingthatthemoonsdiametersubtendsandangle(1/2)°attheeyeofanobserver,findhowfarfromtheeyeofacoinof10cmdiametermustbeheldsoasjusttohidemoon? Commented by adityapratap2585@gmail.com last updated…

Show-that-tan-1-1-3-sin-1-1-3-pi-4-

Question Number 155898 by Tawa11 last updated on 05/Oct/21 Showthattan1(13)+sin1(13)=π4 Answered by immortel last updated on 05/Oct/21 $${L}={tan}\left({tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right)=\frac{{tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right)+{tan}\left({arcsin}\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{1}−{tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right){tan}\left({arcsin}\frac{\mathrm{1}}{\mathrm{3}}\right)} \

Verify-the-identity-in-Excercise-below-1-cos-sec-1-2-1-cos-1-cos-sin-2-3-cos-2-x-sec-2-x-1-sin-2-x-4-sin-t-cosec-t-cos-t-sec-t-1-5-cosec-2-1-tan-2-cot-2-

Question Number 155810 by zainaltanjung last updated on 05/Oct/21 VerifytheidentityinExcercisebelow1).cosθsecθ=12).(1+cosβ)(1cosβ)=sin2β3).cos2x(sec2x1)=sin2x4).sintcosect+costsect=1$$\left.\mathrm{5}\right).\:\frac{\mathrm{cosec}\:^{\mathrm{2}} \theta}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}}…