Menu Close

Category: Trigonometry

Question-153483

Question Number 153483 by cherokeesay last updated on 07/Sep/21 Commented by mr W last updated on 07/Sep/21 $${there}\:{is}\:{no}\:{unique}\:{answer}! \\ $$$${examples}: \\ $$$$\mathrm{sin}\:{x}=\frac{\mathrm{3}}{\mathrm{5}},\:\mathrm{cos}\:{y}=\frac{\mathrm{4}}{\mathrm{5}}\: \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{cos}\:{y}}=\frac{\mathrm{5}}{\mathrm{3}}+\frac{\mathrm{5}}{\mathrm{4}}=\frac{\mathrm{35}}{\mathrm{12}} \\…

Total-number-of-solutions-of-cot-x-cot-x-1-sin-x-x-0-3pi-is-equal-to-

Question Number 22347 by Tinkutara last updated on 16/Oct/17 $$\mathrm{Total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mid\mathrm{cot}\:{x}\mid\:= \\ $$$$\mathrm{cot}\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}},\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{3}\pi\right]\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

The-sum-of-all-the-solutions-of-the-equation-1-2-cosec-x-sec-2-x-2-2-in-the-interval-0-4pi-is-npi-where-n-is-equal-to-

Question Number 22348 by Tinkutara last updated on 16/Oct/17 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{1}\:+\:\mathrm{2}\:\mathrm{cosec}\:{x}\:=\:−\frac{\mathrm{sec}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}}{\mathrm{2}}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is}\:{n}\pi,\:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$ Answered by ajfour last updated on…

if-tanx-1-3-or-other-except-standard-values-how-to-find-x-

Question Number 22268 by Sanjay Deore last updated on 14/Oct/17 $$\mathrm{if}\:\mathrm{tanx}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{or}\:\mathrm{other}\:\left(\mathrm{except}\:\mathrm{standard}\:\right. \\ $$$$\left.\mathrm{values}\right)\:\mathrm{how}\:\mathrm{to}\:\mathrm{find}\:\mathrm{x} \\ $$ Commented by $@ty@m last updated on 14/Oct/17 $${using}\:{trigonometric}\:{tables} \\ $$…

Question-153050

Question Number 153050 by DELETED last updated on 04/Sep/21 Answered by DELETED last updated on 04/Sep/21 $$\mathrm{M}\overset{+\mathrm{4}} {\mathrm{n}}\overset{−\mathrm{2}} {\mathrm{O}}_{\mathrm{2}} \rightarrow\Sigma\mathrm{biloks}=\mathrm{0}\: \\ $$$$\mathrm{Mn}+\left(−\mathrm{2}×\mathrm{2}\right)=\mathrm{0}\:\rightarrow\mathrm{Mn}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{Mn}=+\mathrm{4}\: \\…