Question Number 199952 by Abdullahrussell last updated on 11/Nov/23 Answered by cortano12 last updated on 11/Nov/23 $$\:=\:\frac{\mathrm{2sin}\:\mathrm{7}\theta\:\mathrm{cos}\:\mathrm{2}\theta\:+\:\mathrm{2sin}\:\mathrm{7}\theta\:\mathrm{cos}\:\mathrm{6}\theta}{\mathrm{2cos}\:\mathrm{7}\theta\:\mathrm{cos}\:\mathrm{2}\theta\:+\:\mathrm{2cos}\:\mathrm{7}\theta\:\mathrm{cos}\:\mathrm{6}\theta} \\ $$$$\:=\:\frac{\mathrm{sin}\:\mathrm{7}\theta\left(\mathrm{cos}\:\mathrm{2}\theta+\mathrm{cos}\:\mathrm{6}\theta\right)}{\mathrm{cos}\:\mathrm{7}\theta\left(\mathrm{cos}\:\mathrm{2}\theta+\mathrm{cos}\:\mathrm{6}\theta\right)} \\ $$$$\:=\:\mathrm{tan}\:\mathrm{7}\theta \\ $$ Terms of…
Question Number 199830 by cortano12 last updated on 10/Nov/23 $$\:\:\mathrm{Si}\:\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}=\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\:, \\ $$$$\:\mathrm{halle}\:\mathrm{el}\:\mathrm{valor}\:\mathrm{de}\:\mathrm{la}\:\mathrm{expresion}\: \\ $$$$\:\mathrm{R}=\:\mathrm{16}\left(\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{6}} \mathrm{x}\right)+\mathrm{3}\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}+\mathrm{csc}^{\mathrm{2}} \:\mathrm{x}\right) \\ $$ Answered by Frix last updated…
Question Number 199821 by a.lgnaoui last updated on 09/Nov/23 $$\mathrm{ABFE}\:\:\mathrm{Care} \\ $$$$\mathrm{determiner}\:\boldsymbol{\mathrm{x}}\:\mathrm{en}\:\mathrm{fonction}\:\mathrm{de}\:\mathrm{a}\:\mathrm{etb} \\ $$$$\mathrm{BC}=\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\mathrm{DE}=\:\boldsymbol{\mathrm{b}} \\ $$ Commented by a.lgnaoui last updated on 09/Nov/23 Commented by…
Question Number 199723 by cortano12 last updated on 08/Nov/23 Answered by AST last updated on 08/Nov/23 $${Suppose}\:{ABCD}\:{is}\:{a}\:{square} \\ $$$${Through}\:{P},{let}\:{the}\:{line}\:{parallel}\:{to}\:{BC}\:{meet}\:{AB} \\ $$$${at}\:{F};{then}\:{PF}=\mathrm{8}\Rightarrow\frac{{sin}\left(\mathrm{2}\alpha\right)}{\mathrm{1}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\Rightarrow{cos}\left(\mathrm{2}\alpha\right)=\frac{\mathrm{3}}{\mathrm{5}}=\frac{{AF}}{\mathrm{10}}\Rightarrow{AF}=\mathrm{6}\Rightarrow{PC}=\mathrm{2} \\ $$…
Question Number 199718 by cortano12 last updated on 08/Nov/23 $$\:\begin{cases}{\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}}\\{\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{4}}}\\{\mathrm{sin}\:\mathrm{2x}\:+\:\mathrm{sin}\:\mathrm{2y}=−\frac{\mathrm{27}}{\mathrm{20}}}\end{cases} \\ $$$$\:\:\:\mathrm{sin}\:\left(\mathrm{x}+\mathrm{y}\right)\:=\:… \\ $$ Answered by Sutrisno last updated on 08/Nov/23 $$\left({cosx}+{cosy}\right)\left({sinx}+{siny}\right)=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${cosxsinx}+{cosxsiny}+{cosysinx}+{cosysiny}=\frac{\mathrm{1}}{\mathrm{8}} \\…
Question Number 199669 by 281981 last updated on 07/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199544 by a.lgnaoui last updated on 05/Nov/23 $$\:\:\frac{\boldsymbol{\mathrm{Area}}\left(\boldsymbol{{ydllow}}\right)}{\boldsymbol{\mathrm{Area}}\left(\boldsymbol{{Blue}}\right)}=? \\ $$ Commented by a.lgnaoui last updated on 05/Nov/23 Commented by ajfour last updated on…
Question Number 199481 by tri26112004 last updated on 04/Nov/23 $${Give}\:\bigtriangleup{ABC}\:{is}\:{acute}\:{triangle}. \\ $$$${M}\:\:{is}\:{a}\:{midpoint}\:{of}\:{BC} \\ $$$${Prove}\:{that}\:{AB}+{AC}>\mathrm{2}{AM} \\ $$ Answered by mr W last updated on 04/Nov/23 Commented…
Question Number 199480 by Abdullahrussell last updated on 04/Nov/23 Commented by mr W last updated on 04/Nov/23 $$=\frac{\mathrm{sin}\:\theta+\mathrm{sin}\:\mathrm{50}°+\mathrm{1}+\mathrm{sin}\:\mathrm{50}°}{\mathrm{cos}\:\theta+\mathrm{cos}\:\mathrm{50}°+\mathrm{0}−\mathrm{cos}\:\mathrm{50}°} \\ $$$$=\frac{\mathrm{sin}\:\theta+\mathrm{1}+\mathrm{2}\:\mathrm{sin}\:\mathrm{50}°}{\mathrm{cos}\:\theta} \\ $$ Terms of Service…
Question Number 199424 by cortano12 last updated on 03/Nov/23 $$\:\:\:\boldsymbol{{x}} \\ $$ Answered by Frix last updated on 04/Nov/23 $${f}\left({x}\right)=\frac{\mathrm{cos}\:{x}}{\mathrm{3}}\left(\mathrm{6sin}^{\mathrm{3}} \:{x}\:−\mathrm{4sin}^{\mathrm{2}} \:{x}\:+\mathrm{1}\right) \\ $$$${f}'\left({x}\right)=−\mathrm{sin}\:{x}\:\left(\mathrm{1}−\mathrm{2sin}\:{x}\right)\left(\mathrm{3}−\mathrm{4sin}^{\mathrm{2}} \:{x}\right)…