Menu Close

Category: Trigonometry

In-a-ABC-if-s-a-a-b-s-c-b-c-then-prove-that-r-1-r-2-r-3-are-in-A-P-Here-r-1-r-2-and-r-3-are-the-exradii-opposite-to-angles-A-B-and-C-respectively-

Question Number 16359 by Tinkutara last updated on 21/Jun/17 $$\mathrm{In}\:\mathrm{a}\:\Delta{ABC}\:\mathrm{if}\:\frac{{s}\:−\:{a}}{{a}\:−\:{b}}\:=\:\frac{{s}\:−\:{c}}{{b}\:−\:{c}}\:,\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} ,\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}. \\ $$$$\mathrm{Here}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} \:\mathrm{and}\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{exradii} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{angles}\:{A},\:{B}\:\mathrm{and}\:{C}\:\mathrm{respectively}. \\ $$ Answered…

Question-16354

Question Number 16354 by Tinkutara last updated on 21/Jun/17 Answered by myintkhaing last updated on 21/Jun/17 $$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}=\mathrm{2}−\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}}…

Question-16338

Question Number 16338 by ajfour last updated on 20/Jun/17 Commented by mrW1 last updated on 20/Jun/17 $$\mathrm{x}=\frac{\mathrm{ab}\:\mathrm{sin}\:\left(\theta+\emptyset\right)}{\mathrm{a}\:\mathrm{sin}\:\theta\:+\:\mathrm{b}\:\mathrm{sin}\:\emptyset} \\ $$$$\mathrm{y}=\frac{\mathrm{a}\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{2ab}\:\mathrm{cos}\:\left(\theta+\emptyset\right)}\:\mathrm{sin}\:\theta}{\mathrm{a}\:\mathrm{sin}\:\theta+\:\mathrm{b}\:\mathrm{sin}\:\emptyset} \\ $$$$\mathrm{z}=\frac{\mathrm{b}\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{2ab}\:\mathrm{cos}\:\left(\theta+\emptyset\right)}\:\mathrm{sin}\:\emptyset}{\mathrm{a}\:\mathrm{sin}\:\theta+\:\mathrm{b}\:\mathrm{sin}\:\emptyset}…

If-in-ABC-r-1-r-2-r-3-r-prove-that-triangle-is-right-angled-

Question Number 16273 by Tinkutara last updated on 20/Jun/17 $$\mathrm{If}\:\mathrm{in}\:\Delta{ABC}\:{r}_{\mathrm{1}} \:=\:{r}_{\mathrm{2}} \:+\:{r}_{\mathrm{3}} \:+\:{r},\:\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{right}\:\mathrm{angled}. \\ $$ Commented by mrW1 last updated on 20/Jun/17 $$\mathrm{what}\:\mathrm{is}\:\mathrm{r},\mathrm{r}_{\mathrm{1}}…

2-nd-part-of-Q-16214-Prove-that-r-1-s-tan-A-2-r-2-s-tan-B-2-r-3-s-tan-C-2-

Question Number 16269 by Tinkutara last updated on 20/Jun/17 $$\mathrm{2}^{\mathrm{nd}} \:\mathrm{part}\:\mathrm{of}\:\mathrm{Q}.\:\mathrm{16214}:\:\mathrm{Prove}\:\mathrm{that} \\ $$$${r}_{\mathrm{1}} \:=\:{s}\:\mathrm{tan}\:\left(\frac{{A}}{\mathrm{2}}\right),\:{r}_{\mathrm{2}} \:=\:{s}\:\mathrm{tan}\:\left(\frac{{B}}{\mathrm{2}}\right), \\ $$$${r}_{\mathrm{3}} \:=\:{s}\:\mathrm{tan}\:\left(\frac{{C}}{\mathrm{2}}\right). \\ $$ Answered by mrW1 last updated…

If-a-gt-0-b-gt-0-and-the-minimum-value-of-a-sin-2-b-cosec-2-is-equal-to-maximum-value-of-a-sin-2-b-cos-2-then-a-b-is-equal-to-Answer-4-

Question Number 16179 by Tinkutara last updated on 24/Jun/17 $$\mathrm{If}\:{a}\:>\:\mathrm{0},\:{b}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:{b}\:\mathrm{cosec}^{\mathrm{2}} \:\theta\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:{b}\:\mathrm{cos}^{\mathrm{2}} \:\theta, \\ $$$$\mathrm{then}\:\frac{{a}}{{b}}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\left[\boldsymbol{\mathrm{Answer}}:\:\mathrm{4}\right] \\ $$ Answered by ajfour…

The-number-of-solutions-of-sin-x-tan-x-in-0-4pi-is-are-

Question Number 16093 by Tinkutara last updated on 17/Jun/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mid\mathrm{sin}\:{x}\mid\:=\:\mathrm{tan}\:{x}\:\mathrm{in}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is}/\mathrm{are}? \\ $$ Commented by Tinkutara last updated on 17/Jun/17 $$\mathrm{My}\:\mathrm{answer}\:\mathrm{comes}\:\mathrm{out}\:\mathrm{to}\:\mathrm{be}\:\mathrm{5}\:\mathrm{but} \\ $$$$\mathrm{answer}\:\mathrm{in}\:\mathrm{book}\:\mathrm{is}\:\mathrm{6}.\:\mathrm{How}? \\…