Menu Close

Category: Trigonometry

tan-x-pi-4-3-tan-pi-9-tan-2pi-9-tan-x-pi-4-tan-pi-9-tan-2pi-9-

Question Number 147643 by bobhans last updated on 22/Jul/21 tan(x+π4)+3(tanπ9+tan2π9)=tan(x+π4)tanπ9tan2π9 Answered by liberty last updated on 22/Jul/21 tan(x+π4)tan(x+π4)tanπ9tan2π9=3(tanπ9+tan2π9)tan(x+π4)[1tanπ9tan2π9]=3(tanπ9+tan2π9)$$\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)=−\mathrm{3}\left(\frac{\mathrm{tan}\:\frac{\pi}{\mathrm{9}}+\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}{\mathrm{1}−\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\right) \

Question-16354

Question Number 16354 by Tinkutara last updated on 21/Jun/17 Answered by myintkhaing last updated on 21/Jun/17 $$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}=\mathrm{2}−\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}}…