Menu Close

Category: Trigonometry

Hello-sirs-i-need-your-help-to-solve-tan2x-3-in-0-2pi-i-want-that-you-explain-me-if-possible-how-we-make-graphic-to-determinate-

Question Number 78944 by mathocean1 last updated on 21/Jan/20 $$\mathrm{Hello}\:\mathrm{sirs}\:\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{tan2}{x}\geqslant\sqrt{\mathrm{3}}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\right]. \\ $$$$\mathrm{i}\:\mathrm{want}\:\mathrm{that}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{if}\: \\ $$$$\mathrm{possible}\:\mathrm{how}\:\mathrm{we}\:\mathrm{make}\:\mathrm{graphic}\:\mathrm{to} \\ $$$$\mathrm{determinate}. \\ $$ Commented by mathocean1 last updated…

p-n-1-1-n-2-1-2-n-2-1-n-n-2-k-1-n-k-2-1-6-n-2n-1-n-1-show-that-1-2-1-1-n-1-12n-2-2n-1-n-1-lt-ln-p-n-lt-1-2-1-1-n-hence-find-lim-n-p-n-2-show-that

Question Number 144483 by alcohol last updated on 25/Jun/21 $$\left({p}_{{n}} \right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)…\left(\mathrm{1}+\frac{{n}}{{n}^{\mathrm{2}} }\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}{n}\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right) \\ $$$${show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)−\frac{\mathrm{1}}{\mathrm{12}{n}^{\mathrm{2}} }\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)<{ln}\left({p}_{{n}} \right)<\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)…

If-tan-A-B-1-sec-A-B-2-3-then-prove-that-the-smallest-positive-value-of-B-is-19pi-24-

Question Number 13403 by Tinkutara last updated on 19/May/17 $$\mathrm{If}\:\mathrm{tan}\:\left({A}\:−\:{B}\right)\:=\:\mathrm{1},\:\mathrm{sec}\:\left({A}\:+\:{B}\right)\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:, \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive} \\ $$$$\mathrm{value}\:\mathrm{of}\:{B}\:\mathrm{is}\:\frac{\mathrm{19}\pi}{\mathrm{24}}\:. \\ $$ Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17 $${excuse}\:{me}\:,{but}\:{i}\:{think}\:{your}\:{answer}\:\left(\frac{\mathrm{19}\pi}{\mathrm{24}}\right)\:{is}\:{not}\:{true}. \\…

If-sin-pi-cos-cos-pi-sin-then-prove-that-sin-2-3-4-

Question Number 13401 by Tinkutara last updated on 19/May/17 $$\mathrm{If}\:\mathrm{sin}\:\left(\pi\:\mathrm{cos}\:\theta\right)\:=\:\mathrm{cos}\:\left(\pi\:\mathrm{sin}\:\theta\right),\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{sin}\:\mathrm{2}\theta\:=\:\pm\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$ Answered by ajfour last updated on 19/May/17 $$\mathrm{sin}\:{x}=\mathrm{cos}\:{y} \\ $$$${x}=\frac{\pi}{\mathrm{2}}\pm{y}\:\:\:\:\:\left({at}\:{least}\right) \\…

Find-minimum-value-of-f-x-sin-x-3-sin-x-1-2cos-x-2-where-x-R-

Question Number 144452 by imjagoll last updated on 25/Jun/21 $$\:\mathrm{Find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{sin}\:\left(\mathrm{x}+\mathrm{1}\right)−\mathrm{2cos}\:\left(\mathrm{x}+\mathrm{2}\right) \\ $$$$\mathrm{where}\:\mathrm{x}\epsilon\mathrm{R} \\ $$ Answered by EDWIN88 last updated on 25/Jun/21 $$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{sin}\:\left(\mathrm{x}+\mathrm{1}\right)−\mathrm{2cos}\:\left(\mathrm{x}+\mathrm{2}\right) \\…

Set-a-b-be-such-that-cos-a-b-1-and-cos-a-b-1-e-Then-find-the-number-of-pairs-of-a-b-satisfying-the-above-system-of-equations-

Question Number 144429 by gsk2684 last updated on 25/Jun/21 $$\mathrm{Set}\:\mathrm{a},\mathrm{b}\in\left[−\Pi\:\Pi\right]\:\mathrm{be}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{cos}\:\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{cos}\:\left(\mathrm{a}+\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{e}}. \\ $$$$\mathrm{Then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{pairs} \\ $$$$\mathrm{of}\:\mathrm{a},\mathrm{b}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{above}\: \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{equations}? \\ $$ Terms of Service Privacy Policy…

A-surveyor-standing-at-a-point-X-sites-a-post-Y-due-east-of-him-and-a-tower-Z-of-a-building-on-a-bearing-of-046-After-walking-to-a-point-W-a-distance-of-180m-in-the-south-east-direction-he-observe

Question Number 13329 by chux last updated on 18/May/17 $$\mathrm{A}\:\mathrm{surveyor}\:\mathrm{standing}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{X}, \\ $$$$\mathrm{sites}\:\mathrm{a}\:\mathrm{post}\:\mathrm{Y}\:\mathrm{due}\:\mathrm{east}\:\mathrm{of}\:\mathrm{him}\:\mathrm{and}\: \\ $$$$\mathrm{a}\:\mathrm{tower}\:\mathrm{Z}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{bearing}\:\mathrm{of}\:\:\mathrm{046}°.\mathrm{After}\:\mathrm{walking}\:\mathrm{to}\:\mathrm{a} \\ $$$$\mathrm{point}\:\mathrm{W},\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{180m}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{south}-\mathrm{east}\:\mathrm{direction}\:\mathrm{he}\:\mathrm{observes}\: \\ $$$$\mathrm{the}\:\mathrm{bearing}\:\mathrm{of}\:\mathrm{Z}\:\mathrm{and}\:\mathrm{Y}\:\mathrm{to}\:\mathrm{be}\:\mathrm{337}° \\ $$$$\mathrm{and}\:\mathrm{50}°\:\mathrm{respectively}. \\…

cos-2-x-tan-2-x-3-2-x-R-

Question Number 144379 by imjagoll last updated on 25/Jun/21 $$\:\:\:\:\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}\epsilon\mathrm{R}\: \\ $$ Answered by liberty last updated on 25/Jun/21 $$\:\:\:\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{tan}\:^{\mathrm{2}}…

find-the-number-of-solutions-of-1-sin-x-sin-2-x-2-0-in-

Question Number 144333 by gsk2684 last updated on 24/Jun/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{1}+\:\mathrm{sin}\:\mathrm{x}.\mathrm{sin}^{\mathrm{2}} \frac{\mathrm{x}}{\mathrm{2}}=\mathrm{0}\:\mathrm{in}\:\left[−\Pi\:\Pi\right] \\ $$ Commented by MJS_new last updated on 25/Jun/21 $$\mathrm{no}\:\mathrm{solution}: \\ $$$$\mathrm{1}−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\leqslant\mathrm{1}+\mathrm{sin}\:{x}\:\mathrm{sin}^{\mathrm{2}}…