Question Number 105 by mr.guddukr@gmail.com last updated on 25/Jan/15 $${sin}\mathrm{5}\theta=\:? \\ $$ Answered by mreddy last updated on 03/Dec/14 $$\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2sin}\:\theta\mathrm{cos}\:\theta \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \theta \\ $$$$\mathrm{sin}\:\mathrm{3}\theta=\mathrm{sin}\:\left(\mathrm{2}\theta+\theta\right)=\mathrm{2sin}\:\theta\mathrm{cos}^{\mathrm{2}}…
Question Number 58 by abyaya last updated on 25/Jan/15 $${sin}\mathrm{450}+{cos}\mathrm{450} \\ $$ Answered by kader last updated on 17/Nov/14 $$\mathrm{sin}\:\left(\mathrm{360}+\mathrm{90}\right)+\mathrm{cos}\:\left(\mathrm{360}+\mathrm{90}\right) \\ $$$$\mathrm{sin}\:\mathrm{90}+\mathrm{cos}\:\mathrm{90} \\ $$$$\mathrm{1}+\mathrm{0}=\mathrm{1} \\…
Question Number 65580 by bshahid010@gmail.com last updated on 31/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 131097 by dw last updated on 01/Feb/21 $${Determine}\:{the}\:{value}\:{of}\:\frac{{S}}{\pi},\:{if}\:{S}\:{is}\:{the}\:{sum},\:{in}\:{radians}, \\ $$$${all}\:{equation}\:{solutions}\:{contained}\:{in}\:{the}\:{interval}\:\left[\mathrm{0},\mathrm{14}\pi\right]. \\ $$$$ \\ $$$${the}\:{equation}\:{is}: \\ $$$${cos}\left({x}\right)+{cos}^{\mathrm{5}} \left({x}\right)+{cos}\left(\mathrm{7}{x}\right)=\mathrm{3} \\ $$ Answered by MJS_new last…
Question Number 19 by user1 last updated on 25/Jan/15 $$\mathrm{Let}\:\theta\:\mathrm{be}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{regression} \\ $$$$\mathrm{line}\:\mathrm{of}\:{y}\:\mathrm{on}\:{x}\:\mathrm{and}\:\mathrm{the}\:\mathrm{regression}\:\mathrm{line}\:\mathrm{of} \\ $$$${x}\:\mathrm{on}\:{y}.\:\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{tan}\:\theta=\left\{\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right)}{{r}}×\frac{\sigma_{{x}} ×\sigma_{{y}} }{\left(\sigma_{{x}} ^{\mathrm{2}} +\sigma_{{y}} ^{\mathrm{2}} \right)}\right\} \\ $$…
Question Number 13010 by tawa tawa last updated on 10/May/17 Answered by sandy_suhendra last updated on 10/May/17 $$\mathrm{BC}\:=\:\sqrt{\mathrm{5}^{\mathrm{2}} −\left(\mathrm{7}−\mathrm{4}\right)^{\mathrm{2}} }\:=\:\mathrm{4}\:\mathrm{cm} \\ $$$$\mathrm{let}\:\mathrm{A}_{\mathrm{ABCD}} \:=\:\mathrm{area}\:\mathrm{of}\:\mathrm{ABCD} \\ $$$$\mathrm{and}\:\mathrm{P}_{\mathrm{ABCD}}…
Question Number 144072 by bobhans last updated on 21/Jun/21 $$\mathrm{Use}\:\mathrm{the}\:\mathrm{reduction}\:\mathrm{formula}\:\mathrm{to} \\ $$$$\mathrm{rewrite}\:−\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:−\mathrm{3}\:\mathrm{cos}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{form}\:\mathrm{K}\:\mathrm{sin}\:\left(\mathrm{x}+\alpha\right)\:. \\ $$ Answered by liberty last updated on 21/Jun/21 $$\mathrm{because}\:\begin{cases}{\mathrm{a}=−\mathrm{3}}\\{\mathrm{b}=−\mathrm{3}}\end{cases}\:\mathrm{we}\:\mathrm{have}\:\mathrm{K}=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}}…
Question Number 144050 by ArielVyny last updated on 21/Jun/21 $${in}\:{a}\:{triangle}\:{ABC}\:{we}\:{have} \\ $$$$\begin{cases}{\mathrm{2}{sin}\hat {{A}}+\mathrm{4}{cos}\hat {{B}}=\mathrm{6}}\\{\mathrm{4}{sin}\hat {{B}}+\mathrm{3}{cos}\hat {{A}}=\mathrm{1}}\end{cases} \\ $$$${determine}\:\hat {{C}} \\ $$ Commented by MJS_new last…
Question Number 144007 by gsk2684 last updated on 20/Jun/21 $$\mathrm{find}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{x}\:\mathrm{cosec}\:\mathrm{x} \\ $$$$\mathrm{if}\:\mathrm{0}<\mathrm{x}<\frac{\Pi}{\mathrm{6}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 144006 by gsk2684 last updated on 20/Jun/21 $$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sec}\:\mathrm{2A}+\mathrm{sec}\:\mathrm{2B} \\ $$$$\mathrm{where}\:\mathrm{A}+\mathrm{B}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{and} \\ $$$$\mathrm{A},\mathrm{B}\in\left(\mathrm{o}\:\frac{\Pi}{\mathrm{4}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com