Menu Close

Category: Trigonometry

Hello-sirs-i-want-that-you-explain-me-how-we-solve-the-trigonometric-inequality-with-tangente-we-can-take-for-example-tan2x-3-i-can-solve-this-type-of-equality-but-not-the-inequality-Pleas

Question Number 77472 by mathocean1 last updated on 06/Jan/20 Hellosirsiwantthatyouexplainmehowwesolvethetrigonometricinequalitywithtangente.wecantakeforexampletan2x3icansolvethistypeofequalitybutnottheinequality!Please$$\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help}…\:\mathrm{Even}\:\mathrm{the}\:\mathrm{steps} \

Question-143003

Question Number 143003 by bramlexs22 last updated on 08/Jun/21 Answered by EDWIN88 last updated on 08/Jun/21 (1)SinceΔACEandΔACBsharethesamealtitude,andAE=13AB,theareaofΔACE=13theareaofΔACB.ByHeronformula$$\:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta\mathrm{ACB}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{\mathrm{15}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{2}}\right)\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\:=\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{4}}…

cot-cosec-k-then-find-cosec-cot-and-also-find-cot-

Question Number 11844 by minakshidahaval0202@gmail.co. last updated on 02/Apr/17 cotα+cosecα=kthenfindcosecαcotαandalsofindcotα Answered by sma3l2996 last updated on 02/Apr/17 wehave(i):cotα+cosecα=cosαsinα+1sinα=k$$=\frac{{cos}\alpha+\mathrm{1}}{{sin}\alpha}=\frac{\left({cos}\alpha+\mathrm{1}\right)\left({cos}\alpha−\mathrm{1}\right)}{{sin}\alpha\left({cos}\alpha−\mathrm{1}\right)}=\frac{−{sin}^{\mathrm{2}} \alpha}{{sin}\alpha\left({cos}\alpha−\mathrm{1}\right)}…

Simplify-sin-6-

Question Number 11751 by tawa last updated on 31/Mar/17 Simplify:sin(6θ) Answered by mrW1 last updated on 31/Mar/17 sin(6θ)=sin(4θ+2θ)=sin(4θ)cos(2θ)+sin(2θ)cos(4θ)$$=\mathrm{2sin}\:\left(\mathrm{2}\theta\right)\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{2}\theta\right)+\mathrm{sin}\:\left(\mathrm{2}\theta\right)\left[\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\left(\mathrm{2}\theta\right)\right] \

If-2cos-5pi-4-3x-cos-pi-4-3x-0-and-sin-2x-2y-cos-y-where-pi-4-x-pi-2-and-pi-4-y-pi-2-find-the-value-of-sin-2x-y-cos-2x-y-cos-2x-y-sin-2x-y-

Question Number 142794 by EDWIN88 last updated on 05/Jun/21 If2cos(5π4+3x)cos(π4+3x)=0andsin(2x2y)=cosywhereπ4xπ2andπ4yπ2.findthevalueof{sin(2x+y)cos(2x+y)cos(2xy)sin(2xy) Answered by Rasheed.Sindhi last updated on 05/Jun/21 $$\mathrm{2cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}}+\mathrm{3x}\right)\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{3x}\right)=\mathrm{0} \