Question Number 196302 by cortano12 last updated on 22/Aug/23 Answered by Rasheed.Sindhi last updated on 22/Aug/23 $$\mathrm{60}+\left(\mathrm{180}−{a}\right)+\left(\mathrm{180}−{b}\right)+\left(\mathrm{180}−{c}\right)=\mathrm{360} \\ $$$$\mathrm{60}+\mathrm{180}×\mathrm{3}−\mathrm{360}={a}+{b}+{c} \\ $$$${a}+{b}+{c}=\mathrm{240} \\ $$ Commented by…
Question Number 196265 by KRIMO last updated on 21/Aug/23 Answered by a.lgnaoui last updated on 21/Aug/23 $$\mathrm{posons}\:\mathrm{z}=\mathrm{a}+\mathrm{ib}\:\Leftrightarrow\mathrm{z}=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \:}\:\left(\frac{\mathrm{a}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }}+\mathrm{i}\frac{\mathrm{b}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }}\right) \\ $$$$\mathrm{avec}\:\:\frac{\mathrm{a}}{\:\sqrt{\mathrm{a}^{\mathrm{2}}…
Question Number 196166 by pticantor last updated on 19/Aug/23 $$\boldsymbol{{for}}\:\boldsymbol{{any}}\:\boldsymbol{{a}},\boldsymbol{{b}}\in\left[−\mathrm{1},\mathrm{1}\right]\:\:\boldsymbol{{calculate}}:\: \\ $$$$\boldsymbol{{arccos}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{arcsin}}\left(\boldsymbol{{b}}\right)=? \\ $$$$\boldsymbol{{arcsin}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{arcsin}}\left(\boldsymbol{{b}}\right)=? \\ $$$$\boldsymbol{{arccos}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{arc}}{cos}\left(\boldsymbol{{b}}\right)=? \\ $$ Commented by pticantor last updated on 19/Aug/23…
Question Number 196008 by universe last updated on 15/Aug/23 Commented by universe last updated on 15/Aug/23 $${prove}\:{that} \\ $$ Commented by York12 last updated on…
Question Number 195966 by Erico last updated on 15/Aug/23 $$\mathrm{Calculer}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} {t}\:{ln}\left(\mathrm{tan}{t}\right){dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195972 by mdrifatmia last updated on 14/Aug/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195517 by cortano12 last updated on 04/Aug/23 $$\:\:\:\mathrm{Given}\:\Delta\mathrm{ABC}\:\mathrm{where}\:\mathrm{BC}=\:\mathrm{a},\: \\ $$$$\:\:\:\mathrm{AC}\:=\:\mathrm{b}\:\mathrm{and}\:\mathrm{AB}\:=\:\mathrm{c}\:.\:\mathrm{If}\:\angle\:\mathrm{A}=\:\mathrm{60}° \\ $$$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\left(\mathrm{1}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{a}}{\mathrm{c}}\right)\left(\mathrm{1}+\frac{\mathrm{c}}{\mathrm{b}}+\frac{\mathrm{a}}{\mathrm{b}}\right). \\ $$$$ \\ $$ Answered by horsebrand11 last updated…
Question Number 195320 by Erico last updated on 30/Jul/23 $$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\:+\infty} {t}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {tdt} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}\pi} }\:\:\underset{\:\mathrm{0}} {\int}^{\:\pi} {e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {t}\:{dt} \\ $$$$\mathrm{and}\:\:\mathrm{I}_{\mathrm{n}}…
Question Number 195263 by dimentri last updated on 28/Jul/23 $$\:\:\:\:\:\:\begin{cases}{{y}\:\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\mathrm{2}}\\{\mathrm{4sin}\:{x}−\mathrm{2}{y}\:\mathrm{cos}\:{x}\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\mathrm{tan}\:{x}\:=?\: \\ $$ Answered by cortano12 last updated on 28/Jul/23 $$\:\:\:\:\:\:\begin{cases}{\:\cancel{\underline{\underbrace{ }}}}\end{cases} \\ $$…
Question Number 195097 by Rupesh123 last updated on 24/Jul/23 Answered by Rasheed.Sindhi last updated on 24/Jul/23 $$\mathrm{49}^{\mathrm{sin}\:{x}} =\sqrt[{\mathrm{cos}\:{x}}]{\mathrm{7}}\: \\ $$$$\mathrm{7}^{\mathrm{2}\:\mathrm{sin}\:{x}} =\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{cos}\:{x}}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}=\mathrm{1}…