Question Number 6655 by Tawakalitu. last updated on 09/Jul/16 $${If}\:\:\:{tan}\mathrm{2}{x}\:−\:{sin}\mathrm{2}{x}\:=\:{b}\:\:{and}\:\:{tan}\mathrm{2}{x}\:+\:{sin}\mathrm{2}{x}\:=\:{a} \\ $$$${prove}\:{that}\::\: \\ $$$${b}^{\mathrm{2}} \:−\:{a}^{\mathrm{2}\:} \:=\:\mathrm{16}{ba} \\ $$ Commented by Yozzii last updated on 09/Jul/16…
Question Number 6602 by cindycastro last updated on 05/Jul/16 $$\%{ml} \\ $$ Commented by Temp last updated on 05/Jul/16 $$=\frac{{ml}}{\mathrm{100}} \\ $$ Terms of Service…
Question Number 6558 by Tawakalitu. last updated on 02/Jul/16 $${If}\:\:{secx}\:−\:{tanx}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${find}\:\:\:{secx}\:+\:{tanx} \\ $$ Commented by Tawakalitu. last updated on 02/Jul/16 $$ \\ $$$$ \\…
Question Number 71918 by lalitchand last updated on 22/Oct/19 $$\mathrm{If}\:\mathrm{Cos}\theta=\frac{\mathrm{x}\:\mathrm{cos}\beta\:−\:\mathrm{y}}{\mathrm{x}\:−\:\mathrm{y}\:\mathrm{cos}\beta}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\:\mathrm{tan}\frac{\theta}{\mathrm{2}}\:=\sqrt{\frac{\mathrm{x}−\mathrm{y}}{\mathrm{x}+\mathrm{y}}\:}\:\mathrm{tan}\frac{\beta}{\mathrm{2}} \\ $$ Commented by Prithwish sen last updated on 22/Oct/19 $$\mathrm{Using}\:\mathrm{componendo}\:\mathrm{dividendo} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\theta}{\mathrm{1}+\mathrm{cos}\theta}\:=\:\frac{\left(\mathrm{1}−\mathrm{cos}\beta\right)\left(\mathrm{x}+\mathrm{y}\right)}{\left(\mathrm{1}+\mathrm{cos}\beta\right)\left(\mathrm{x}−\mathrm{y}\right)} \\ $$$$\boldsymbol{\mathrm{tan}}\frac{\boldsymbol{\theta}}{\mathrm{2}}\:=\:\sqrt{\frac{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}}}\:\boldsymbol{\mathrm{tan}}\frac{\boldsymbol{\beta}}{\mathrm{2}}…
Question Number 6370 by sanusihammed last updated on 25/Jun/16 $${If}\:\:{x}\:=\:\frac{\mathrm{3}{sin}\theta}{\:\sqrt{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:}}\:\:\:{and}\:\:{y}\:=\:\mathrm{4}{cos}\theta \\ $$$${find}\:\:{cos}\theta \\ $$ Commented by nburiburu last updated on 25/Jun/16 $${cos}\theta={y}/\mathrm{4}\:{with}\:\mathrm{16}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}}…
Question Number 6316 by sanusihammed last updated on 23/Jun/16 $${How}\:{many}\:{idempotent}\:{matrices}\:{can}\:{be}\:{formed}\:{from}\:{a} \\ $$$${diagonal}\:{matrix}\:{A}\:{with}\:{the}\:{elements}\: \\ $$$${a}\left({i},{i}\right)\:{for}\:{i}\:=\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},…….{n}\right\} \\ $$ Answered by nburiburu last updated on 23/Jun/16 $$\:{in}\:\mathbb{R}^{{n}×{n}} :\:…
Question Number 137382 by bramlexs22 last updated on 02/Apr/21 $${The}\:{solution}\:{set}\:{of}\:{equation} \\ $$$$\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}{x}\:=\:\mathrm{1}\: \\ $$$${on}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi \\ $$ Commented by MJS_new last updated on…
Question Number 137366 by liberty last updated on 02/Apr/21 $${Find}\:{the}\:{solution}\:{of}\:{equation} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{x}\:=\:\mathrm{1} \\ $$$${on}\:{interval}\:\left(\mathrm{0},\mathrm{2}\pi\right) \\ $$ Answered by benjo_mathlover last updated on…
Question Number 137338 by liberty last updated on 01/Apr/21 $$\mathrm{Given}\:\frac{\mathrm{cos}\:\mathrm{8}\theta+\mathrm{6cos}\:\mathrm{6}\theta+\mathrm{13cos}\:\mathrm{4}\theta+\mathrm{8cos}\:\mathrm{2}\theta}{\mathrm{cos}\:\mathrm{7}\theta+\mathrm{5cos}\:\mathrm{5}\theta+\mathrm{8cos}\:\mathrm{3}\theta}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\mathrm{2}\theta\:? \\ $$ Answered by EDWIN88 last updated on 01/Apr/21 $$\mathrm{consider}\:\mathrm{numerator} \\ $$$$\Leftrightarrow\:\mathrm{cos}\:\mathrm{8}\theta+\mathrm{cos}\:\mathrm{6}\theta+\mathrm{5}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{cos}\:\mathrm{4}\theta\right)+\mathrm{8}\left(\mathrm{cos}\:\mathrm{4}\theta+\mathrm{cos}\:\mathrm{2}\theta\right) \\…
Question Number 6225 by sanusihammed last updated on 19/Jun/16 Commented by Rasheed Soomro last updated on 19/Jun/16 $${y}+{x}\:\:{has}\:{not}\:\:{unique}\:{value}. \\ $$ Commented by FilupSmith last updated…