Menu Close

Category: Trigonometry

Question-135868

Question Number 135868 by liberty last updated on 16/Mar/21 Answered by EDWIN88 last updated on 16/Mar/21 $$\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:−\mathrm{1}\leqslant\mathrm{cos}\:\mathrm{x}\leqslant\mathrm{1}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{2}\pi\:;\:\mathrm{so}\:\mathrm{we}\:\mathrm{find}\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{−\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}}{\mathrm{2}} \\ $$$$\mathrm{then}\:−\mathrm{2}\leqslant−\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}\leqslant\mathrm{2}\:\mathrm{or}\:…

What-are-the-possible-value-of-cos-sin-if-sin-cos-1-2-

Question Number 135855 by liberty last updated on 16/Mar/21 $${What}\:{are}\:{the}\:{possible}\:{value}\:{of} \\ $$$$\mathrm{cos}\:\alpha×\mathrm{sin}\:\beta\:\:{if}\:\mathrm{sin}\:\alpha×\mathrm{cos}\:\beta=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by EDWIN88 last updated on 16/Mar/21 $$\mathrm{We}\:\mathrm{have}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha+\beta\right)\leqslant\mathrm{1}\:\mathrm{and}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha−\beta\right)\leqslant\mathrm{1} \\ $$$$\mathrm{now}\:\mathrm{from}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha+\beta\right)\leqslant\mathrm{1}\:\mathrm{we}\:\mathrm{get}\: \\…

Find-the-minimum-value-of-sin-x-cos-x-tan-x-cot-x-sec-x-csc-x-for-real-numbers-x-

Question Number 135792 by benjo_mathlover last updated on 16/Mar/21 $${Find}\:{the}\:{minimum}\:{value} \\ $$$${of}\:\mid\mathrm{sin}\:{x}+\mathrm{cos}\:{x}+\mathrm{tan}\:{x}+\mathrm{cot}\:{x}+\mathrm{sec}\:{x}+\mathrm{csc}\:{x}\mid\: \\ $$$${for}\:{real}\:{numbers}\:{x}. \\ $$ Answered by MJS_new last updated on 16/Mar/21 $${x}={t}+\frac{\mathrm{5}\pi}{\mathrm{4}}\:\mathrm{leads}\:\mathrm{to} \\…

What-the-value-of-1-cot-23-1-cot-22-

Question Number 135795 by benjo_mathlover last updated on 16/Mar/21 $${What}\:{the}\:{value}\:{of}\:\left(\mathrm{1}−\mathrm{cot}\:\mathrm{23}°\right)\left(\mathrm{1}−\mathrm{cot}\:\mathrm{22}°\right). \\ $$ Answered by MJS_new last updated on 16/Mar/21 $$\left(\mathrm{1}−\mathrm{cot}\:\left(\frac{\mathrm{45}}{\mathrm{2}}−{x}\right)\right)\left(\mathrm{1}−\mathrm{cot}\:\left(\frac{\mathrm{45}}{\mathrm{2}}+{x}\right)\right)=\mathrm{2} \\ $$ Answered by liberty…

If-x-2-tan-cot-x-1-0-has-two-real-solutions-2-3-2-3-find-sin-cos-

Question Number 135791 by benjo_mathlover last updated on 16/Mar/21 $${If}\:{x}^{\mathrm{2}} +\left(\mathrm{tan}\:\theta+\mathrm{cot}\:\theta\right){x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$${has}\:{two}\:{real}\:{solutions}\: \\ $$$$\left\{\:\mathrm{2}−\sqrt{\mathrm{3}}\:,\:\mathrm{2}+\sqrt{\mathrm{3}}\:\right\},\:{find}\:\begin{cases}{\mathrm{sin}\:\theta}\\{\mathrm{cos}\:\theta}\end{cases}\:. \\ $$ Answered by EDWIN88 last updated on 17/Mar/21 $$\mathrm{By}\:\mathrm{Vieta}'\mathrm{s}\:\Rightarrow\:\mathrm{x}_{\mathrm{1}}…

cos-x-sin-x-2tan-x-1-cos-x-2-0-

Question Number 135679 by liberty last updated on 15/Mar/21 $$\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left(\mathrm{2tan}\:{x}+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}\right)+\mathrm{2}\:=\:\mathrm{0} \\ $$ Answered by EDWIN88 last updated on 15/Mar/21 $$\mathrm{Let}\:\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\:=\:\mathrm{t}\:\rightarrow\begin{cases}{\mathrm{cos}\:\mathrm{x}=\frac{\mathrm{1}−\mathrm{t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\\{\mathrm{sin}\:\mathrm{x}=\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\\{\mathrm{tan}\:\mathrm{x}=\frac{\mathrm{2t}}{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}\end{cases} \\ $$$$\Leftrightarrow\:\left(\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}}…

Find-the-value-of-S-where-S-r-1-89-sin-6-r-

Question Number 4600 by Yozzii last updated on 11/Feb/16 $${Find}\:{the}\:{value}\:{of}\:{S}\:{where}\:{S}=\underset{{r}=\mathrm{1}} {\overset{\mathrm{89}} {\sum}}{sin}^{\mathrm{6}} {r}°. \\ $$ Commented by FilupSmith last updated on 11/Feb/16 $$\mathrm{Don}'\mathrm{t}\:\mathrm{you}\:\mathrm{use}\:\mathrm{the}\:\mathrm{series}\:\mathrm{representation} \\ $$$$\mathrm{for}\:\mathrm{sine}?…

sin-pi-7-cos-pi-14-tan-3pi-14-2cos-pi-7-1-

Question Number 135604 by liberty last updated on 14/Mar/21 $$\:\frac{\mathrm{sin}\:\left(\pi/\mathrm{7}\right).\mathrm{cos}\:\left(\pi/\mathrm{14}\right)}{\mathrm{tan}\:\left(\mathrm{3}\pi/\mathrm{14}\right)\left(\mathrm{2cos}\:\left(\pi/\mathrm{7}\right)−\mathrm{1}\right)}\:=? \\ $$ Answered by EDWIN88 last updated on 14/Mar/21 $$\:\mathrm{Remark}\:\begin{cases}{\mathrm{sin}\:\mathrm{3x}=\mathrm{3sin}\:\mathrm{x}−\mathrm{4sin}\:^{\mathrm{3}} \mathrm{x}}\\{\mathrm{cos}\:\mathrm{3x}=\mathrm{4cos}\:^{\mathrm{3}} \mathrm{x}−\mathrm{3cos}\:\mathrm{x}}\end{cases} \\ $$$$\mathrm{let}\:\mathrm{x}\:=\:\frac{\pi}{\mathrm{14}}\:\Rightarrow\frac{\mathrm{sin}\:\left(\pi/\mathrm{7}\right)\mathrm{cos}\:\left(\pi/\mathrm{14}\right)}{\mathrm{tan}\:\left(\mathrm{3}\pi/\mathrm{14}\right)\left(\mathrm{2cos}\:\left(\pi/\mathrm{7}\right)−\mathrm{1}\right)}\: \\…