Question Number 196008 by universe last updated on 15/Aug/23 Commented by universe last updated on 15/Aug/23 $${prove}\:{that} \\ $$ Commented by York12 last updated on…
Question Number 195966 by Erico last updated on 15/Aug/23 $$\mathrm{Calculer}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} {t}\:{ln}\left(\mathrm{tan}{t}\right){dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195972 by mdrifatmia last updated on 14/Aug/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195517 by cortano12 last updated on 04/Aug/23 $$\:\:\:\mathrm{Given}\:\Delta\mathrm{ABC}\:\mathrm{where}\:\mathrm{BC}=\:\mathrm{a},\: \\ $$$$\:\:\:\mathrm{AC}\:=\:\mathrm{b}\:\mathrm{and}\:\mathrm{AB}\:=\:\mathrm{c}\:.\:\mathrm{If}\:\angle\:\mathrm{A}=\:\mathrm{60}° \\ $$$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\left(\mathrm{1}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{a}}{\mathrm{c}}\right)\left(\mathrm{1}+\frac{\mathrm{c}}{\mathrm{b}}+\frac{\mathrm{a}}{\mathrm{b}}\right). \\ $$$$ \\ $$ Answered by horsebrand11 last updated…
Question Number 195320 by Erico last updated on 30/Jul/23 $$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\:+\infty} {t}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {tdt} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}\pi} }\:\:\underset{\:\mathrm{0}} {\int}^{\:\pi} {e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {t}\:{dt} \\ $$$$\mathrm{and}\:\:\mathrm{I}_{\mathrm{n}}…
Question Number 195263 by dimentri last updated on 28/Jul/23 $$\:\:\:\:\:\:\begin{cases}{{y}\:\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\mathrm{2}}\\{\mathrm{4sin}\:{x}−\mathrm{2}{y}\:\mathrm{cos}\:{x}\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\mathrm{tan}\:{x}\:=?\: \\ $$ Answered by cortano12 last updated on 28/Jul/23 $$\:\:\:\:\:\:\begin{cases}{\:\cancel{\underline{\underbrace{ }}}}\end{cases} \\ $$…
Question Number 195097 by Rupesh123 last updated on 24/Jul/23 Answered by Rasheed.Sindhi last updated on 24/Jul/23 $$\mathrm{49}^{\mathrm{sin}\:{x}} =\sqrt[{\mathrm{cos}\:{x}}]{\mathrm{7}}\: \\ $$$$\mathrm{7}^{\mathrm{2}\:\mathrm{sin}\:{x}} =\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{cos}\:{x}}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}=\mathrm{1}…
Question Number 194937 by dimentri last updated on 20/Jul/23 $$\:\:{If}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{24}}\right)=\:\left(\sqrt{{a}}−\sqrt{{b}}\right)\left(\sqrt{{c}}−\sqrt{{d}}\right) \\ $$$$\:\:{where}\:{a},{b},{c},{d}\:{are}\:{postive}\:{numbers}. \\ $$$$\:\:{Find}\:{the}\:{value}\:{of}\:\left({a}+{b}+{c}+{d}+\mathrm{2}\right) \\ $$ Answered by BaliramKumar last updated on 20/Jul/23 $$\mathrm{tan}\left(\frac{\pi}{\mathrm{24}}\right)\:=\:\mathrm{tan7}.\mathrm{5}° \\…
Question Number 194903 by cortano12 last updated on 19/Jul/23 Commented by cortano12 last updated on 19/Jul/23 $$\:\:\:{x}\:=\:\sqrt{\mathrm{39}}\:\:\left(×\right) \\ $$$$\:\:\:{x}\:=\:\sqrt{\mathrm{30}}\:\left(\checkmark\right) \\ $$ Answered by MM42 last…
Question Number 194913 by cortano12 last updated on 19/Jul/23 Answered by witcher3 last updated on 19/Jul/23 $$\left(\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}''\left(\mathrm{x}\right)\right)\mathrm{cos}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\left.\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{2}}} \mathrm{f}''\mathrm{cos}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{f}'\mathrm{cos}\left(\mathrm{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int\mathrm{f}'\mathrm{sin}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\left.=\left.−\mathrm{f}'\left(\mathrm{0}\right)+\mathrm{fsin}\left(\mathrm{x}\right)\right]_{\mathrm{0}}…