Menu Close

Category: Trigonometry

Given-sin-A-sin-B-0-7-cos-A-cos-B-0-8-find-the-value-of-A-and-B-

Question Number 134581 by EDWIN88 last updated on 05/Mar/21 $$\mathrm{Given}\:\begin{cases}{\mathrm{sin}\:\mathrm{A}+\mathrm{sin}\:\mathrm{B}=\mathrm{0}.\mathrm{7}}\\{\mathrm{cos}\:\mathrm{A}+\mathrm{cos}\:\mathrm{B}=\mathrm{0}.\mathrm{8}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$ Answered by liberty last updated on 05/Mar/21 $$\Leftrightarrow\:\mathrm{2}+\mathrm{2cos}\:\left(\mathrm{A}−\mathrm{B}\right)=\:\frac{\mathrm{49}+\mathrm{64}}{\mathrm{100}} \\ $$$$\Leftrightarrow\mathrm{2cos}\:\left(\mathrm{A}−\mathrm{B}\right)\:=\:−\frac{\mathrm{87}}{\mathrm{100}} \\…

Question-69034

Question Number 69034 by ahmadshah last updated on 18/Sep/19 Answered by $@ty@m123 last updated on 18/Sep/19 $$\mathrm{4cos}\:{x}−\mathrm{3sec}\:{x}−\mathrm{2tan}\:{x} \\ $$$$\mathrm{4cos}\:{x}−\frac{\mathrm{3}}{\mathrm{cos}\:{x}}−\frac{\mathrm{2sin}\:{x}}{\mathrm{cos}\:{x}} \\ $$$$=\frac{\mathrm{4cos}\:^{\mathrm{2}} {x}−\mathrm{3}−\mathrm{2sin}\:{x}}{\mathrm{cos}\:{x}} \\ $$$$=\frac{\mathrm{4cos}\:^{\mathrm{3}} {x}−\mathrm{3cos}\:{x}−\mathrm{2sin}\:{x}\mathrm{cos}\:{x}}{\mathrm{cos}^{\mathrm{2}}…

if-the-range-of-f-x-y-sec-1-x-1-x-sec-1-y-1-y-xy-lt-0-is-a-b-and-a-b-equals-pi-10-then-is-eqal-to-

Question Number 68991 by pranay02 last updated on 17/Sep/19 $${if}\:{the}\:{range}\:{of}\:{f}\left({x},\:{y}\right)\:=\:{sec}^{−\mathrm{1}} \left({x}+\frac{\mathrm{1}}{{x}}\right)+{sec}^{−\mathrm{1}} \left({y}+\frac{\mathrm{1}}{{y}}\right),\:{xy}<\mathrm{0}\:{is}\:\left({a},\:{b}\right)\:{and}\:\left({a}+{b}\right)\:{equals}\:\frac{\lambda\pi}{\mathrm{10}},\:{then}\:\lambda\:{is}\:{eqal}\:{to}\: \\ $$ Answered by MJS last updated on 18/Sep/19 $${g}\left({t}\right)=\mathrm{sec}^{−\mathrm{1}} \:\left({t}+\frac{\mathrm{1}}{{t}}\right)\:=\mathrm{cos}^{−\mathrm{1}} \:\left(\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\right)…

Question-68964

Question Number 68964 by ahmadshah last updated on 17/Sep/19 Commented by mind is power last updated on 17/Sep/19 $${m}+{in}={e}^{{ia}} +{e}^{{ib}} \Rightarrow{m}^{\mathrm{2}} −{n}^{\mathrm{2}} +\mathrm{2}{imn}={e}^{{i}\mathrm{2}{a}} +{e}^{\mathrm{2}{ib}} +\mathrm{2}{e}^{{i}\left({a}+{b}\right)}…

sin-x-sin-2x-sin-3x-cos-x-2cos-2-x-0-lt-x-lt-pi-

Question Number 134479 by abdullahquwatan last updated on 04/Mar/21 $$\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:\mathrm{2x}+\mathrm{sin}\:\mathrm{3x}=\mathrm{cos}\:\mathrm{x}+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x} \\ $$$$\mathrm{0}<\mathrm{x}<\pi \\ $$ Answered by EDWIN88 last updated on 14/Mar/21 $$\mathrm{sin}\:\mathrm{3x}+\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{2sin}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{x} \\ $$$$\left(\bullet\right)\mathrm{2sin}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{sin}\:\mathrm{2x}\:=\:\mathrm{cos}\:\mathrm{x}\left(\mathrm{1}+\mathrm{2cos}\:\mathrm{x}\right)…

If-1-cos-x-cos-2x-cos-3x-cos-4x-3-for-0-lt-x-pi-2-find-the-value-of-sin-x-sin-2x-sin-3x-

Question Number 134475 by EDWIN88 last updated on 04/Mar/21 $$\mathrm{If}\:\mathrm{1}+\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:\mathrm{2x}+\mathrm{cos}\:\mathrm{3x}+\mathrm{cos}\:\mathrm{4x}+…+\infty\:=\:\mathrm{3} \\ $$$$\mathrm{for}\:\mathrm{0}<\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:\mathrm{2x}+\mathrm{sin}\:\mathrm{3x}+…+\infty \\ $$ Commented by Dwaipayan Shikari last updated on 04/Mar/21 $$\underset{{n}=\mathrm{0}}…

determinant-Solve-the-following-Equation-81-sin-2-x-81-cos-2-x-30-

Question Number 134464 by bramlexs22 last updated on 04/Mar/21 $$\:\:\:\:\:\:\:\begin{array}{|c|c|}{\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{Equation}}\\{\:\:\mathrm{81}^{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \:+\:\mathrm{81}^{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}} \:=\:\mathrm{30}\:}\\\hline\end{array} \\ $$ Commented by harckinwunmy last updated on 04/Mar/21 $${ff} \\…

soit-E-l-equation-complex-z-2-2pz-q-0-p-q-C-let-u-C-u-2-q-show-that-if-z-1-z-2-are-solutions-of-E-z-1-z-2-p-u-p-u-

Question Number 134461 by pticantor last updated on 04/Mar/21 $${soit}\:\left(\boldsymbol{{E}}\right)\:{l}'{equation}\:{complex}: \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{pz}}−\boldsymbol{{q}}=\mathrm{0} \\ $$$$\boldsymbol{{p}},\boldsymbol{{q}}\in\mathbb{C} \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{u}}\in\mathbb{C}\backslash\:\boldsymbol{{u}}^{\mathrm{2}} =\boldsymbol{{q}} \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\boldsymbol{{if}}\:\boldsymbol{{z}}_{\mathrm{1}} ,\boldsymbol{{z}}_{\mathrm{2}} \boldsymbol{{are}}\:\boldsymbol{{solutions}}\:\boldsymbol{{of}}\:\left(\boldsymbol{{E}}\right), \\ $$$$\mid\boldsymbol{{z}}_{\mathrm{1}} \mid+\mid\boldsymbol{{z}}_{\mathrm{2}}…