Question Number 132531 by bemath last updated on 15/Feb/21 $$\mathrm{Find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2sin}\:\mathrm{x}+\mathrm{3}}−\sqrt{\mathrm{sin}\:\mathrm{x}+\mathrm{1}} \\ $$ Answered by liberty last updated on 15/Feb/21 $$\frac{\mathrm{df}\left(\mathrm{x}\right)}{\mathrm{dx}}=\frac{\mathrm{cos}\:\mathrm{x}}{\:\sqrt{\mathrm{2sin}\:\mathrm{x}+\mathrm{3}}}−\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{2}\sqrt{\mathrm{sin}\:\mathrm{x}+\mathrm{1}}}\:=\mathrm{0} \\ $$$$\:\frac{\mathrm{cos}\:\mathrm{x}}{\:\sqrt{\mathrm{2sin}\:\mathrm{x}+\mathrm{3}}}\:=\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{2}\sqrt{\mathrm{sin}\:\mathrm{x}+\mathrm{1}}} \\…
Question Number 1407 by 112358 last updated on 29/Jul/15 $${Solve}\:{the}\:{following}\:{inequality} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{sinx}+\mathrm{1}}{{cosx}}\leqslant\mathrm{1} \\ $$$${where}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi\:,\:{cosx}\neq\mathrm{0} \\ $$ Commented by 123456 last updated on 29/Jul/15 $${f}\left({x}\right)=\frac{\mathrm{sin}\:{x}+\mathrm{1}}{\mathrm{cos}\:{x}} \\…
Question Number 132478 by MathCoder last updated on 14/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132474 by bemath last updated on 14/Feb/21 $$\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{4sin}\:\left(\mathrm{x}\right)+\mathrm{1}}\:−\mathrm{cos}\:\left(\mathrm{x}\right) \\ $$$$\mathrm{is}\: \\ $$ Commented by EDWIN88 last updated on 14/Feb/21 Commented by…
Question Number 132384 by Tatiane last updated on 13/Feb/21 $${i}^{\mathrm{761}+{i}=\mathrm{0}} \\ $$ Answered by MJS_new last updated on 14/Feb/21 $$\mathrm{i}^{\mathrm{4}{n}} =\mathrm{1} \\ $$$$\mathrm{i}^{\mathrm{4}{n}+\mathrm{1}} =\mathrm{i} \\…
Question Number 132347 by Study last updated on 13/Feb/21 $${sin}\left(\mathrm{2}{x}+\frac{\pi}{\mathrm{4}}\right)−{sin}\left(\mathrm{2}{x}+\frac{\pi}{\mathrm{3}}\right)=\mathrm{0}\:\:\:{x}=? \\ $$ Answered by EDWIN88 last updated on 13/Feb/21 $$\mathrm{sin}\:\mathrm{X}−\mathrm{sin}\:\mathrm{Y}\:=\:\mathrm{2cos}\:\left(\frac{\mathrm{X}+\mathrm{Y}}{\mathrm{2}}\right)\mathrm{sin}\:\:\left(\frac{\mathrm{X}−\mathrm{Y}}{\mathrm{2}}\right) \\ $$$$\mathrm{where}\:\begin{cases}{\mathrm{X}=\mathrm{2x}+\frac{\pi}{\mathrm{4}}}\\{\mathrm{Y}=\mathrm{2x}+\frac{\pi}{\mathrm{3}}}\end{cases} \\ $$$$\mathrm{sin}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{sin}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{3}}\right)=\mathrm{0} \\…
Question Number 66768 by John Kaloki Musau last updated on 19/Aug/19 $${without}\:{using}\:{mathematical}\:{tables} \\ $$$${evaluate} \\ $$$$\frac{\mathrm{sin}\:\mathrm{60}.\mathrm{tan}\:\mathrm{30}.\mathrm{cos}\:\mathrm{60}+\mathrm{sin}\:\mathrm{30}.\mathrm{cos}\:\mathrm{45}.\mathrm{sin}\:\mathrm{45}}{\mathrm{sin}\:\mathrm{90}.\mathrm{cos}\:\mathrm{45}.\mathrm{sin}\:\mathrm{45}−\mathrm{sin}\:\mathrm{60}.\mathrm{cos}\:\mathrm{30}.\mathrm{sin}\:\mathrm{30}} \\ $$ Commented by Tony Lin last updated on…
Question Number 1206 by gs8763330@gmail.com last updated on 14/Jul/15 $${prove}\:{that}\:\:\mathrm{2sin}^{−\mathrm{1}} \mathrm{3}/\mathrm{4}=\mathrm{tan}^{−\mathrm{1}} \mathrm{24}/\mathrm{7} \\ $$ Commented by 123456 last updated on 14/Jul/15 $$\mathrm{sin}\:\alpha={a}\overset{{b}.{c}} {\Leftrightarrow}\alpha=\mathrm{sin}^{−\mathrm{1}} {a} \\…
Question Number 132205 by Arijit last updated on 12/Feb/21 Commented by Arijit last updated on 12/Feb/21 $$\boldsymbol{\mathrm{Please}}\:\boldsymbol{\mathrm{Help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}….. \\ $$ Answered by mathmax by abdo last…
Question Number 1113 by 123456 last updated on 15/Jun/15 $$\mathrm{sin}^{−\mathrm{1}} \left[\frac{\sqrt{\mathrm{3}}}{\mathrm{8}}\left(\sqrt{\mathrm{13}}−\mathrm{1}\right)\right]+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{4}}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com