Menu Close

Category: Trigonometry

Determiner-R1-R2-R3-pour-b-12cm-EF-MN-EF-Tangent-aux-cercles-C1-R1-C2-R2-EF-a-MN-b-MN-tangent-au-cercle-C2-OM-ON-3a-2-MON-2x-

Question Number 212011 by a.lgnaoui last updated on 28/Sep/24 $$\boldsymbol{\mathrm{D}}\mathrm{eterminer}:\:\:\boldsymbol{\mathrm{R}}\mathrm{1}\:\:\:\boldsymbol{\mathrm{R}}\mathrm{2}\:\:\:\boldsymbol{\mathrm{R}}\mathrm{3} \\ $$$$\boldsymbol{\mathrm{pour}}\:\:\:\boldsymbol{\mathrm{b}}=\mathrm{12}\boldsymbol{\mathrm{cm}}\:\:\:\: \\ $$$$\boldsymbol{\mathrm{EF}}\://\:\boldsymbol{\mathrm{MN}}\:;\:\:\boldsymbol{\mathrm{EF}}\:\boldsymbol{\mathrm{Tangent}}\:\boldsymbol{\mathrm{aux}}\:\boldsymbol{\mathrm{cercles}}:\: \\ $$$$\:\:\boldsymbol{\mathrm{C}}\mathrm{1}\left(\boldsymbol{\mathrm{R}}\mathrm{1}\right)\:\:\:\boldsymbol{\mathrm{C}}\mathrm{2}\left(\boldsymbol{\mathrm{R}}\mathrm{2}\right)\:\:;\:\:\:\boldsymbol{\mathrm{EF}}=\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\boldsymbol{\mathrm{MN}}=\boldsymbol{\mathrm{b}} \\ $$$$\boldsymbol{\mathrm{MN}}:\:\boldsymbol{\mathrm{tangent}}\:\boldsymbol{\mathrm{au}}\:\boldsymbol{\mathrm{cercle}}\:\boldsymbol{\mathrm{C}}\mathrm{2} \\ $$$$\boldsymbol{\mathrm{OM}}=\boldsymbol{\mathrm{ON}}=\frac{\mathrm{3}\boldsymbol{\mathrm{a}}}{\mathrm{2}}\:\:\:\:\:\:\:\:\measuredangle\mathrm{MON}=\mathrm{2}\boldsymbol{\mathrm{x}}\:\:\: \\ $$$$ \\ $$ Commented…

Question-211956

Question Number 211956 by Durganand last updated on 25/Sep/24 Answered by Frix last updated on 25/Sep/24 $$\mathrm{tan}\:\alpha\:={t}\:\:\:\:\:\mathrm{tan}\:\mathrm{2}\alpha\:=\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\:\:\:\:\mathrm{sin}\:\mathrm{2}\alpha\:=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}=\frac{\mathrm{2}−\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\mathrm{2}{t}}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{2}{t}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2}\alpha} \\…

In-a-triangle-the-bisector-of-the-side-c-is-perpendicular-to-side-b-Prove-that-2tanC-tanA-0-

Question Number 211672 by MATHEMATICSAM last updated on 15/Sep/24 $$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{the}\:\mathrm{side}\:{c}\:\mathrm{is} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{side}\:{b}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{2tanC}\:+\:\mathrm{tanA}\:=\:\mathrm{0}. \\ $$ Commented by Frix last updated on 16/Sep/24 $$\mathrm{If}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{a}\:{side}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to} \\…

In-triangle-ABC-C-60-If-the-length-of-opposite-sides-of-A-B-and-C-are-a-b-and-c-respectively-then-prove-that-1-a-c-1-b-c-3-a-b-c-

Question Number 211651 by MATHEMATICSAM last updated on 15/Sep/24 $$\mathrm{In}\:\mathrm{triangle}\:\mathrm{ABC},\:\angle\mathrm{C}\:=\:\mathrm{60}°.\:\mathrm{If}\:\mathrm{the}\:\mathrm{length} \\ $$$$\mathrm{of}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{of}\:\angle\mathrm{A},\:\angle\mathrm{B}\:\mathrm{and}\:\angle\mathrm{C}\:\mathrm{are} \\ $$$${a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{respectively}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}\:+\:{c}}\:+\:\frac{\mathrm{1}}{{b}\:+\:{c}}\:=\:\frac{\mathrm{3}}{{a}\:+\:{b}\:+\:{c}}\:. \\ $$ Answered by som(math1967) last updated on 15/Sep/24…

Prove-that-in-a-triangle-the-ratios-of-the-sides-and-the-sine-of-the-opposite-angles-are-equal-Also-prove-that-each-ratio-is-equal-to-the-diameter-of-the-circum-circle-of-the-triangle-

Question Number 211609 by MATHEMATICSAM last updated on 14/Sep/24 $$\mathrm{Prove}\:\mathrm{that},\:\mathrm{in}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{the}\:\mathrm{ratios}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{angles} \\ $$$$\mathrm{are}\:\mathrm{equal}.\:\mathrm{Also}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{each}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circum}\:\mathrm{circle} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$ Answered by Frix last updated…

Question-211575

Question Number 211575 by BaliramKumar last updated on 13/Sep/24 Answered by som(math1967) last updated on 13/Sep/24 $$\:\left(\boldsymbol{{a}}\right)\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{{m}}+\boldsymbol{{n}}+\frac{\mathrm{1}}{\boldsymbol{{m}}}+\frac{\mathrm{1}}{\boldsymbol{{n}}}\right) \\ $$ Answered by A5T last updated on…