Menu Close

Category: Trigonometry

Question-189125

Question Number 189125 by Rupesh123 last updated on 12/Mar/23 Answered by cortano12 last updated on 12/Mar/23 $$\:\mathrm{cos}\:\mathrm{18}°=\mathrm{2cos}^{\mathrm{2}} \:\mathrm{9}°−\mathrm{1} \\ $$$$\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{9}°=\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{18}°}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\mathrm{18}°=\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{18}°} \\…

Question-57959

Question Number 57959 by rahul 19 last updated on 15/Apr/19 Answered by MJS last updated on 16/Apr/19 $$\mathrm{3sin}^{−\mathrm{1}} \:{x}\:={y}\:\Rightarrow\:{x}=\mathrm{sin}\:\frac{{y}}{\mathrm{3}} \\ $$$$\mathrm{with}\:{x}\in\left[−\mathrm{1};\:\mathrm{1}\right]\:\wedge\:{y}\in\left[−\frac{\mathrm{3}\pi}{\mathrm{2}};\:\frac{\mathrm{3}\pi}{\mathrm{2}}\right] \\ $$$$\mathrm{3sin}^{−\mathrm{1}} \:{x}\:\mathrm{increases}\:\mathrm{for}\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1} \\…

Question-189026

Question Number 189026 by Rupesh123 last updated on 10/Mar/23 Answered by Ar Brandon last updated on 10/Mar/23 $$\mathrm{cot}^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{cosec}^{\mathrm{2}} {x}\: \\ $$$$\mid\mathrm{4}−{a}\mid+\mathrm{1}=\frac{\mid{a}\mid}{\mathrm{3}}\:,\:\mathrm{0}<{a}\leqslant\mathrm{4} \\ $$$$\Rightarrow\mathrm{4}−{a}+\mathrm{1}=\frac{{a}}{\mathrm{3}}\:\Rightarrow{a}=\frac{\mathrm{15}}{\mathrm{4}} \\…

Question-57915

Question Number 57915 by Tinkutara last updated on 14/Apr/19 Answered by mr W last updated on 14/Apr/19 $$\left(\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\theta\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)+\mathrm{2}^{\mathrm{tan}^{\mathrm{2}} \:\theta} =\mathrm{0} \\ $$$${let}\:{t}=\mathrm{tan}^{\mathrm{2}} \:\theta\geqslant\mathrm{0}…

Question-188912

Question Number 188912 by Mingma last updated on 08/Mar/23 Answered by a.lgnaoui last updated on 09/Mar/23 $${posons}\:\:\frac{\theta}{\mathrm{3}}={x} \\ $$$$\mathrm{sin}\:\left(\frac{\pi−\theta}{\mathrm{3}}\right)=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\pi+\theta}{\mathrm{3}}\right)=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right) \\ $$$$\:\: \\ $$$$\mathrm{sin}^{\mathrm{3}}…

A-luminous-point-P-is-inside-a-circle-A-ray-emanates-from-P-and-after-two-reflections-by-the-circle-returns-to-P-If-be-the-angle-of-incidence-a-the-distance-of-P-from-the-centre-of-the-circle-a

Question Number 57664 by necx1 last updated on 09/Apr/19 $${A}\:{luminous}\:{point}\:{P}\:\:{is}\:{inside}\:{a}\:{circle}. \\ $$$${A}\:{ray}\:{emanates}\:{from}\:{P}\:{and}\:{after}\:{two} \\ $$$${reflections}\:{by}\:{the}\:{circle},{returns}\:{to}\:{P}. \\ $$$${If}\:\theta\:{be}\:{the}\:{angle}\:{of}\:{incidence},\:{a}=\:{the} \\ $$$${distance}\:{of}\:{P}\:{from}\:{the}\:{centre}\:{of}\:{the} \\ $$$${circle}\:{and}\:{b}={the}\:{distance}\:{of}\:{the}\:{centre} \\ $$$${from}\:{the}\:{point}\:{where}\:{the}\:{ray}\:{in}\:{its} \\ $$$${course}\:{crosses}\:{its}\:{diameter}\:{through}\:{P}. \\…

Question-188721

Question Number 188721 by Rupesh123 last updated on 06/Mar/23 Answered by Frix last updated on 06/Mar/23 $${x}\geqslant\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{0}\leqslant\sqrt{{x}}<\infty \\ $$$$−\mathrm{2}.\mathrm{73581}…\leqslant\mathrm{sin}\:{x}\:+\mathrm{2sin}\:\mathrm{2}{x}\:\leqslant\mathrm{2}.\mathrm{73581}… \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{Exact}\:\mathrm{values}\:\pm\frac{\left.\sqrt{\mathrm{6}\left(\mathrm{789}+\mathrm{43}\sqrt{\mathrm{129}}\right.}\right)}{\mathrm{32}}\right]…