Menu Close

Category: Trigonometry

Question-54239

Question Number 54239 by 951172235v last updated on 01/Feb/19 Answered by Prithwish sen last updated on 01/Feb/19 $$=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{1}}{\mathrm{p}+\mathrm{q}+\mathrm{s}}\:+\frac{\mathrm{1}}{\mathrm{p}+\mathrm{q}+\mathrm{t}}}{\mathrm{1}−\:\frac{\mathrm{1}}{\left(\mathrm{p}+\mathrm{q}+\mathrm{s}\right)\left(\mathrm{p}+\mathrm{q}+\mathrm{t}\right)}}\right)\:+ \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{1}}{\mathrm{p}+\mathrm{r}+\mathrm{u}}\:+\frac{\mathrm{1}}{\mathrm{p}+\mathrm{r}+\mathrm{v}}}{\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{p}+\mathrm{r}+\mathrm{u}\right)\left(\mathrm{p}+\mathrm{r}+\mathrm{v}\right)}}\:\right) \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2p}+\mathrm{2q}+\mathrm{s}+\mathrm{t}}{\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}}…

Please-sirs-How-is-cot-tan-1-2-pi-

Question Number 54156 by Tawa1 last updated on 30/Jan/19 $$\mathrm{Please}\:\mathrm{sirs},\:\:\mathrm{How}\:\mathrm{is},\:\:\:\:\:\:−\:\mathrm{cot}\left(\alpha\right)\:\:=\:\:\mathrm{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\:+\:\alpha\right)\:\:???? \\ $$ Commented by turbo msup by abdo last updated on 30/Jan/19 $${tan}\left(\frac{\pi}{\mathrm{2}}+\alpha\right)\:=\frac{{sin}\left(\frac{\pi}{\mathrm{2}}+\alpha\right)}{{cos}\left(\frac{\pi}{\mathrm{2}}+\alpha\right)} \\ $$$$=\frac{{cos}\alpha}{−{sin}\alpha}\:=−\frac{\mathrm{1}}{{tan}\alpha}\:=−{cotan}\alpha\:.…

Prove-that-sin-19-sin-cos-18-cos-16-cos-2-1-cos-2-cos-18-

Question Number 54126 by rahul 19 last updated on 29/Jan/19 $${Prove}\:{that} \\ $$$$\frac{\mathrm{sin}\:\mathrm{19}\theta}{\mathrm{sin}\:\theta}\:=\:\mathrm{cos}\left(−\mathrm{18}\theta\right)+\mathrm{cos}\left(−\mathrm{16}\theta\right)+… \\ $$$$\:\:\:…+\:\mathrm{cos}\left(−\mathrm{2}\theta\right)+\mathrm{1}+\mathrm{cos}\left(\mathrm{2}\theta\right)+….+\mathrm{cos}\left(\mathrm{18}\theta\right). \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19 $$…

Question-185134

Question Number 185134 by emmanuelson123 last updated on 17/Jan/23 Answered by som(math1967) last updated on 17/Jan/23 $$\:\frac{{sin}^{\mathrm{4}} {x}}{\mathrm{5}}\:+\frac{\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{\mathrm{7}}=\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\Rightarrow\mathrm{7}{sin}^{\mathrm{4}} {x}+\mathrm{5}−\mathrm{10}{sin}^{\mathrm{2}} {x}+\mathrm{5}{sin}^{\mathrm{4}} {x}=\frac{\mathrm{35}}{\mathrm{12}}…

Question-185107

Question Number 185107 by emmanuelson123 last updated on 17/Jan/23 Answered by SEKRET last updated on 17/Jan/23 $$\:\:\:\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{2048}}\right)\:+\:\boldsymbol{\mathrm{cos}}\left(\frac{\mathrm{2}\boldsymbol{\pi}}{\mathrm{2048}}\right)\:=\:\mathrm{1} \\ $$$$\mathrm{2}\left(\mathrm{1}−\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{2048}}\right)\right)\:+\:\mathrm{2}\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{2048}}\right)\:−\:\mathrm{1}=\mathrm{1} \\ $$$$\:\:\mathrm{2}−\mathrm{2}\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{2048}}\right)+\mathrm{2}\boldsymbol{\mathrm{cos}}^{\mathrm{2}}…

Question-185101

Question Number 185101 by emmanuelson123 last updated on 17/Jan/23 Answered by Frix last updated on 17/Jan/23 $$\mathrm{In}\:\mathrm{triangle}\:{a},\:{b},\:{c}: \\ $$$${D}=\sqrt{\left({a}+{b}+{c}\right)\left({b}+{c}−{a}\right)\left({a}+{c}−{b}\right)\left({a}+{b}−{c}\right)} \\ $$$$ \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\gamma\:={c}^{\mathrm{2}}…

Question-119548

Question Number 119548 by benjo_mathlover last updated on 25/Oct/20 Commented by benjo_mathlover last updated on 25/Oct/20 $$\:{If}\:\mathrm{cos}\:{A}\:=\:\mathrm{tan}\:{B}\:,\:\mathrm{cos}\:{B}\:=\:\mathrm{tan}\:{C}\:{and}\: \\ $$$$\mathrm{cos}\:{C}\:=\:\mathrm{tan}\:{A}\:,\:{then}\:\mathrm{sin}\:{A}\:{is}\:{equal}\:{to} \\ $$ Commented by TANMAY PANACEA…

cos-pi-5-cos-x-sin-pi-5-sin-x-2-2-

Question Number 119506 by bemath last updated on 25/Oct/20 $$\:\:\:\mathrm{cos}\:\frac{\pi}{\mathrm{5}}\mathrm{cos}\:{x}+\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\mathrm{sin}\:{x}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$ Answered by 1549442205PVT last updated on 25/Oct/20 $$\:\:\:\mathrm{cos}\:\frac{\pi}{\mathrm{5}}\mathrm{cos}\:{x}+\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\mathrm{sin}\:{x}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{cos}\left(\mathrm{x}−\frac{\pi}{\mathrm{5}}\right)\leqslant\mathrm{cos}\frac{\pi}{\mathrm{4}} \\ $$$$\Leftrightarrow\mathrm{x}−\frac{\pi}{\mathrm{5}}\geqslant\frac{\pi}{\mathrm{4}}+\mathrm{2m}\pi \\…