Menu Close

Category: Trigonometry

Calculate-without-using-caculator-a-2-2-sin10-2sin35-sec5-2-cos40-sin5-b-sin6-sin42-sin66-sin78-

Question Number 117046 by 1549442205PVT last updated on 09/Oct/20 $$\mathrm{Calculate}\:\mathrm{without}\:\mathrm{using}\:\mathrm{caculator}: \\ $$$$\left.\mathrm{a}\right)−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{sin10}°\left(\mathrm{2sin35}°−\frac{\mathrm{sec5}°}{\mathrm{2}}−\frac{\mathrm{cos40}°}{\mathrm{sin5}°}\right) \\ $$$$\left.\mathrm{b}\right)\mathrm{sin6}°−\mathrm{sin42}°−\mathrm{sin66}°+\mathrm{sin78}° \\ $$ Answered by bemath last updated on 09/Oct/20 $$\left(\mathrm{a}\right)\:−\mathrm{4}\sqrt{\mathrm{2}}\:\mathrm{sin}\:\mathrm{35}°\:\mathrm{sin}\:\mathrm{10}°+\:\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\mathrm{10}°}{\mathrm{cos}\:\mathrm{5}°}\:+\:\frac{\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{40}°\:\mathrm{sin}\:\mathrm{10}°}{\mathrm{sin}\:\mathrm{5}°}\:= \\…

A-man-walking-due-to-west-along-a-level-road-observes-a-school-in-a-direction-N-72-E-After-walking-1500-yards-he-observes-it-in-a-direction-N-67-E-How-far-is-the-school-from-the-road-

Question Number 51508 by 786786AM last updated on 27/Dec/18 $$\mathrm{A}\:\mathrm{man}\:\mathrm{walking}\:\mathrm{due}\:\mathrm{to}\:\mathrm{west}\:\mathrm{along}\:\mathrm{a}\:\mathrm{level}\:\mathrm{road}\:\mathrm{observes}\:\mathrm{a}\:\mathrm{school}\:\mathrm{in}\:\mathrm{a}\:\mathrm{direction}\:\mathrm{N}\:\mathrm{72}°\:\mathrm{E}.\:\mathrm{After}\:\mathrm{walking}\:\mathrm{1500}\:\mathrm{yards},\: \\ $$$$\mathrm{he}\:\mathrm{observes}\:\mathrm{it}\:\mathrm{in}\:\mathrm{a}\:\mathrm{direction}\:\mathrm{N}\:\mathrm{67}°\:\mathrm{E}.\:\mathrm{How}\:\mathrm{far}\:\mathrm{is}\:\mathrm{the}\:\mathrm{school}\:\mathrm{from}\:\mathrm{the}\:\mathrm{road}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Find-the-period-of-the-following-a-sin-4x-sin-3x-b-sin-pix-cos-x-c-2-sin-2-3x-3-tan-4x-4-cot-6x-cosec-8x-sec-3-10x-cot-12x-

Question Number 182552 by Acem last updated on 11/Dec/22 $${Find}\:{the}\:{period}\:{of}\:{the}\:{following}: \\ $$$$\:{a}\bullet\:\mathrm{sin}\:\mathrm{4}{x}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\:{b}\bullet\:\mathrm{sin}\:\pi{x}+\:\mathrm{cos}\:{x} \\ $$$$\:{c}\bullet\:\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{3}{x}−\:\mathrm{3}\:\mathrm{tan}\:\mathrm{4}{x}+\:\mathrm{4}\:\mathrm{cot}\:\mathrm{6}{x}}{\mid\mathrm{cosec}\:\mathrm{8}{x}\mid−\:\mathrm{sec}^{\mathrm{3}} \:\mathrm{10}{x}+\:\sqrt{\mathrm{cot}\:\mathrm{12}{x}}} \\ $$ Terms of Service Privacy Policy…

Question-116964

Question Number 116964 by saorey0202 last updated on 08/Oct/20 Answered by Bird last updated on 08/Oct/20 $${we}\:{have}\:\mathrm{1}+{ix}\:=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:{e}^{{iarctan}\left({x}\right)} \\ $$$$\mathrm{1}−{ix}\:=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:{e}^{−{i}\:{arctan}\left({x}\right)} \:\Rightarrow \\ $$$$\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\:={e}^{\mathrm{2}{i}\:{arctan}\left({x}\right)} \\…