Menu Close

Category: Trigonometry

Question-176668

Question Number 176668 by mnjuly1970 last updated on 24/Sep/22 Answered by a.lgnaoui last updated on 25/Sep/22 2π9=(3π9π9);4π9=(3π9+π9);8π9=(ππ9)cos3π9=cosπ3=12=cos(2π9)cos(π9)sin(2π9)cos(π9)=(2cos2(π9)1)cosπ92sin2(π9)cos(π9)$$=\mathrm{2cos}\:^{\mathrm{3}} \left(\frac{\pi}{\mathrm{9}}\right)−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{9}}\right)−\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{9}}\right)\right)\mathrm{cos}\:\frac{\pi}{\mathrm{9}}…

Question-111125

Question Number 111125 by bemath last updated on 02/Sep/20 Answered by Dwaipayan Shikari last updated on 02/Sep/20 cos55°cos65°cos175°12(2cos55°cos5°)cos65°12(cos60°+cos50°)sin25°$$−\frac{\mathrm{1}}{\mathrm{4}}{sin}\mathrm{25}°−\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{cos}\mathrm{50}°{sin}\mathrm{25}°\right) \

Question-111079

Question Number 111079 by shahria14 last updated on 02/Sep/20 Answered by mr W last updated on 02/Sep/20 t=cos1513cost=513sint=1213$$\mathrm{tan}\:\frac{{t}}{\mathrm{2}}=\frac{\mathrm{sin}\:{t}}{\mathrm{1}+\mathrm{cos}\:{t}}=\frac{\frac{\mathrm{12}}{\mathrm{13}}}{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{13}}}=\frac{\mathrm{2}}{\mathrm{3}}…